Modeling the Hemodynamic Response Function Using EEG-fMRI Data During Eyes-Open Resting-State Conditions and Motor Task Execution
- PMID: 35488957
- DOI: 10.1007/s10548-022-00898-w
Modeling the Hemodynamic Response Function Using EEG-fMRI Data During Eyes-Open Resting-State Conditions and Motor Task Execution
Abstract
Being able to accurately quantify the hemodynamic response function (HRF) that links the blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) signal to the underlying neural activity is important both for elucidating neurovascular coupling mechanisms and improving the accuracy of fMRI-based functional connectivity analyses. In particular, HRF estimation using BOLD-fMRI is challenging particularly in the case of resting-state data, due to the absence of information about the underlying neuronal dynamics. To this end, using simultaneously recorded electroencephalography (EEG) and fMRI data is a promising approach, as EEG provides a more direct measure of neural activations. In the present work, we employ simultaneous EEG-fMRI to investigate the regional characteristics of the HRF using measurements acquired during resting conditions. We propose a novel methodological approach based on combining distributed EEG source space reconstruction, which improves the spatial resolution of HRF estimation and using block-structured linear and nonlinear models, which enables us to simultaneously obtain HRF estimates and the contribution of different EEG frequency bands. Our results suggest that the dynamics of the resting-state BOLD signal can be sufficiently described using linear models and that the contribution of each band is region specific. Specifically, it was found that sensory-motor cortices exhibit positive HRF shapes, whereas the lateral occipital cortex and areas in the parietal cortex, such as the inferior and superior parietal lobule exhibit negative HRF shapes. To validate the proposed method, we repeated the analysis using simultaneous EEG-fMRI measurements acquired during execution of a unimanual hand-grip task. Our results reveal significant associations between BOLD signal variations and electrophysiological power fluctuations in the ipsilateral primary motor cortex, particularly for the EEG beta band, in agreement with previous studies in the literature.
Keywords: BOLD; EEG-fMRI; Hemodynamic response function; Resting state.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Similar articles
-
Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing.Elife. 2023 Aug 11;12:e86453. doi: 10.7554/eLife.86453. Elife. 2023. PMID: 37565644 Free PMC article.
-
EEG spatiospectral patterns and their link to fMRI BOLD signal via variable hemodynamic response functions.J Neurosci Methods. 2019 Apr 15;318:34-46. doi: 10.1016/j.jneumeth.2019.02.012. Epub 2019 Feb 22. J Neurosci Methods. 2019. PMID: 30802472
-
Investigating the neurovascular coupling across multiple motor execution and imagery conditions: a whole-brain EEG-informed fMRI analysis.Neuroimage. 2025 Aug 15;317:121311. doi: 10.1016/j.neuroimage.2025.121311. Epub 2025 Jun 6. Neuroimage. 2025. PMID: 40484327
-
Functional MRI and resting state connectivity in white matter - a mini-review.Magn Reson Imaging. 2019 Nov;63:1-11. doi: 10.1016/j.mri.2019.07.017. Epub 2019 Jul 31. Magn Reson Imaging. 2019. PMID: 31376477 Free PMC article. Review.
-
Electrophysiological correlates of the BOLD signal for EEG-informed fMRI.Hum Brain Mapp. 2015 Jan;36(1):391-414. doi: 10.1002/hbm.22623. Epub 2014 Oct 3. Hum Brain Mapp. 2015. PMID: 25277370 Free PMC article. Review.
Cited by
-
Cognition is entangled with metabolism: relevance for resting-state EEG-fMRI.Front Hum Neurosci. 2023 Apr 11;17:976036. doi: 10.3389/fnhum.2023.976036. eCollection 2023. Front Hum Neurosci. 2023. PMID: 37113322 Free PMC article.
-
Extracting electrophysiological correlates of functional magnetic resonance imaging data using the canonical polyadic decomposition.Hum Brain Mapp. 2022 Sep;43(13):4045-4073. doi: 10.1002/hbm.25902. Epub 2022 May 14. Hum Brain Mapp. 2022. PMID: 35567768 Free PMC article.
-
Blind Visualization of Task-Related Networks From Visual Oddball Simultaneous EEG-fMRI Data: Spectral or Spatiospectral Model?Front Neurol. 2021 Apr 26;12:644874. doi: 10.3389/fneur.2021.644874. eCollection 2021. Front Neurol. 2021. PMID: 33981283 Free PMC article.
-
Beta-band desynchronization in the human hippocampus during movement preparation in a delayed reach task.Exp Brain Res. 2025 Jun 23;243(7):180. doi: 10.1007/s00221-025-07124-6. Exp Brain Res. 2025. PMID: 40549177 Free PMC article.
-
Consistency of resting-state correlations between fMRI networks and EEG band power.Imaging Neurosci (Camb). 2025 Jun 18;3:IMAG.a.37. doi: 10.1162/IMAG.a.37. eCollection 2025. Imaging Neurosci (Camb). 2025. PMID: 40800856 Free PMC article.
References
-
- Abreu R, Leal A, Figueiredo P (2018) EEG-informed fMRI: a review of data analysis methods. Front Hum Neurosci 12:1–23. https://doi.org/10.3389/fnhum.2018.00029 - DOI
-
- Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239. https://doi.org/10.1006/nimg.1998.0361 - DOI - PubMed
-
- Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239. https://doi.org/10.1006/nimg.2000.0599 - DOI - PubMed
-
- Bagshaw AP, Hawco C, Bénar CG, Kobayashi E, Aghakhani Y, Dubeau F, Pike GB, Gotman J (2005) Analysis of the EEG-fMRI response to prolonged bursts of interictal epileptiform activity. Neuroimage 24:1099–1112. https://doi.org/10.1016/j.neuroimage.2004.10.010 - DOI - PubMed
-
- Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152. https://doi.org/10.1109/TMI.2003.822821 - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical