Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 30:389:133044.
doi: 10.1016/j.foodchem.2022.133044. Epub 2022 Apr 22.

Non-covalent interactions of selected flavors with pea protein: Role of molecular structure of flavor compounds

Affiliations

Non-covalent interactions of selected flavors with pea protein: Role of molecular structure of flavor compounds

Shuang Bi et al. Food Chem. .

Abstract

The influence of the molecular structures of flavor compounds (specifically, variations in chain length and functional groups) on the binding of the flavor compounds (Z)-2-penten-1-ol, hexanal, and (E)-2-octenal to pea protein was investigated. The results showed that the molecular structures of the flavor compounds strongly influenced their binding affinity for pea protein. Specifically, (E)-2-octenal exhibited a higher binding affinity and a higher Stern-Volmer constant with pea protein than both hexanal and (Z)-2-penten-1-ol. Thermodynamic analysis indicated that the flavor compound-pea protein interactions were spontaneous. Hydrophobic interactions were dominant in the non-covalent interactions between (E)-2-octenal/(Z)-2-penten-1-ol and pea protein, whereas hydrogen bonding was dominant in the non-covalent interactions between hexanal and pea protein. Surface hydrophobicity measurements, the use of bond-disrupting agents, and molecular docking further supported the hypothesis that hydrogen bonding, as well as hydrophobic interactions, occurred between the flavor compounds and pea protein.

Keywords: Binding affinity; Flavor compound; Interaction mechanism; Molecular docking; Pea protein; Spectroscopic analysis.

PubMed Disclaimer

MeSH terms

LinkOut - more resources