Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May:92:103866.
doi: 10.1016/j.etap.2022.103866. Epub 2022 Apr 27.

Hematological effects of glyphosate in mice revealed by traditional toxicology and transcriptome sequencing

Affiliations

Hematological effects of glyphosate in mice revealed by traditional toxicology and transcriptome sequencing

Yuhong He et al. Environ Toxicol Pharmacol. 2022 May.

Abstract

The herbicide glyphosate is being used worldwide. Hematological toxicity caused by glyphosate exposure has been reported, but the underlying mechanisms remain unclear. In this study, classical toxicology methods and RNA sequencing were performed to explore the molecular mechanisms related to glyphosate hematotoxicity. We found that 500 mg/kg b.w. glyphosate-based herbicide (GBH) significantly decreased leukocyte, neutrophil, lymphocyte and monocyte counts, as well as inhibited colony-forming abilities of CFU-GM, CFU-G and CFU-GEMM. RNA sequencing identified 82 and 48 differentially expressed genes (DEGs) in BM cells after treatment with 250 mg/kg and 500 mg/kg GBH, respectively. Meanwhile, GO and KEGG analyses revealed that the MAPK signaling pathway, hematopoietic cell lineage and cytokine-cytokine receptor interactions were vital pathways involved in GBH-induced toxicity in BM cells. Notably, Nr4a, Fos, Thbs1 and tnfrsf19 contributed to the hematotoxicity of GBH by regulating hematopoietic stem cell functions. In summary, our efforts enhance the understanding of the glyphosate hematotoxic responses and facilitate future studies on its corresponding mechanisms.

Keywords: Bone marrow cells; Differentially expressed genes; Glyphosate; Hematological effects; Mice; Transcriptomics analysis.

PubMed Disclaimer

Comment in

LinkOut - more resources