Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 24;10(13):7967-7975.
doi: 10.1039/d0ra00414f. eCollection 2020 Feb 18.

Cellulose particles capture aldehyde VOC pollutants

Affiliations

Cellulose particles capture aldehyde VOC pollutants

Isaac Bravo et al. RSC Adv. .

Abstract

Aldehydes are commonly encountered Volatile Organic Compounds (VOCs) released to the atmosphere from a variety of anthropogenic sources. Based on the increasing interest in developing sustainable and environmentally friendly materials for the decontamination of VOCs, cellulose particles have emerged as one possible candidate, but there is a lack of understanding of the physicochemical properties affecting the adsorption of VOCs, and the effect of the extraction source on these intrinsic features. The present study was focused on the evaluation of unmodified cellulose particles extracted from biodiverse sources in Ecuador as potential VOC decontaminants. Modifications of the natural fibers with polyethylenimine (PEI) coating were performed to enhance the adsorption effectiveness. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscopy (SEM) methods were used to characterize the physicochemical properties of the isolates. Gas chromatography assays demonstrated that unmodified cellulose can adsorb an aldehyde VOC, hexanal, reaching up to a 56.42 ± 7.30% reduction. Electrostatic coating of the cellulose particles with small quantities of PEI enhanced the VOC remediation capacities (i.e. 98.12 ± 1.18%). Results demonstrated that the biodiverse plant source of the cellulose isolate can affect the gas capturing properties, and that these particles can be an environmentally friendly solution for effective adsorption of VOC pollutants.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. (A) FTIR spectra of the cellulose crystals (CMC and CNC controls), (B) thermal stability comparison of the controls. XRD graphs of (C) CMC and, (D) CNC. (E) SEM micrograph of CMC, and (F) TEM image of CNC.
Fig. 2
Fig. 2. Fourier-transform infrared spectra comparison of the unmodified natural cellulose particles obtained from biodiversity.
Fig. 3
Fig. 3. X-ray diffraction analysis and Crystallinity Index (CrI) of the natural cellulose particles: F17, F19, F20, F25, F27 and F28.
Fig. 4
Fig. 4. SEM micrographs of the natural unmodified cellulose particles: (A) F17, (B) F19, (C) F20, (D) F25, (E) F27, and (F) F28.
Fig. 5
Fig. 5. Pore volume (PV) and sample surface area (SSA) table of the cellulose samples, and the distribution of the pore volume correlated with the surface area of the particles and the controls.
Fig. 6
Fig. 6. (A) FT-IR spectra of unmodified and PEI-treated cellulose particle F28, (B) TGA analyses of isolated F28 before and after PEI surface coating, and (C) SEM micrographs of natural and PEI-treated F28 samples, respectively.
Fig. 7
Fig. 7. Percent reduction of hexanal vapors after treatment with cellulose crystals controls and unmodified or PEI-treated natural cellulose samples.

References

    1. Klimont Z. Streets D. G. Gupta S. Cofala J. Lixin F. Ichikawa Y. Atmos. Environ. 2002;36:1309. doi: 10.1016/S1352-2310(01)00529-5. - DOI
    2. Atkinson R. Arey J. Chem. Rev. 2003;103:4605. doi: 10.1021/cr0206420. - DOI - PubMed
    3. Staudt M. Kesselmeier J. Staudt M. J. Atmos. Chem. 1999;33:23. doi: 10.1023/A:1006127516791. - DOI
    4. Guerra F. D. Campbell M. L. Attia M. F. Whitehead D. C. Alexis F. ChemistrySelect. 2018;3:5495. doi: 10.1002/slct.201703149. - DOI
    1. Khan F. I. Ghoshal A. Kr. J. Loss Prev. Process. Ind. 2000;13:527. doi: 10.1016/S0950-4230(00)00007-3. - DOI
    2. Whitehead D. C. and Alexis F., US Pat., 20160220952, 2016, http://www.freepatentsonline.com/y2016/0220952.html
    1. Bates M. E. Grieger K. D. Trump B. D. Keisler J. M. Plourde K. J. Linkov I. Environ. Sci. Technol. 2016;50:349. doi: 10.1021/acs.est.5b03005. - DOI - PubMed
    2. Zhang W. X. J. Nanopart. Res. 2003;5:323. doi: 10.1023/A:1025520116015. - DOI
    3. Wang D. Pillai S. C. Ho S. H. Zeng J. Li Y. Dionysiou D. D. Appl. Catal., B. 2018;237:721. doi: 10.1016/j.apcatb.2018.05.094. - DOI
    4. Anjum N. A., in Enhancing cleanup of environmental pollutants, ed. N. A. Anjum, S. S. Gill and N. Tuteja, Springer International, 2017, vol. 1, pp. 289–315
    1. Khin M. M. Nair A. S. Babu V. J. Murugan R. Ramakrishna S. Energy Environ. Sci. 2012;5:8075. doi: 10.1039/C2EE21818F. - DOI
    2. Guerra F. D. Attia M. F. Whitehead D. C. Alexis F. Molecules. 2018;23:E1760. doi: 10.3390/molecules23071760. - DOI - PMC - PubMed
    1. Das S. Sen B. Debnath N. Environ. Sci. Pollut. Res. Int. 2015;23:18333. doi: 10.1007/s11356-015-5491-6. - DOI - PubMed
    2. Cheng Y. He H. Yang C. Zeng G. Li X. Chen H. Guanlong Y. Biotechnol. Adv. 2016;34:1091. doi: 10.1016/j.biotechadv.2016.06.007. - DOI - PubMed
    3. Yang C. Qian H. Li X. Cheng Y. He H. Zeng G. Trends Biotechnol. 2018;36:673. doi: 10.1016/j.tibtech.2018.02.004. - DOI - PubMed