Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 2;11(56):35326-35330.
doi: 10.1039/d1ra05957b. eCollection 2021 Oct 28.

Photocatalytic cascade reactions and dye degradation over CdS-metal-organic framework hybrids

Affiliations

Photocatalytic cascade reactions and dye degradation over CdS-metal-organic framework hybrids

Shu-Rong Li et al. RSC Adv. .

Abstract

Two bifunctional CdS-MOF composites have been designed and fabricated. The hybrids exhibited synergistic photocatalytic performance toward two cascade reactions under visible light integrating photooxidation activity of CdS and Lewis acids/bases of the MOF. The composite further promoted the photodegradation of dyes benefiting from effective electron transfer between the MOF and CdS.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Schematic illustration for the preparation of CdS/MOF hybrid.
Fig. 1
Fig. 1. (a) PXRD patterns of simulated NH2-MIL-125, as-synthesized NH2-MIL-125, and CdS/NH2-MIL-125. (b) N2 sorption isotherms of NH2-MIL-125 and 15 wt% CdS/NH2-MIL-125 at 77 K. (c) SEM and (d) TEM images of 15 wt% CdS/NH2-MIL-125 and (inset in d) the corresponding size distribution of CdS NPs.
Fig. 2
Fig. 2. Plots of photodegradation rate of (a) methyl violet, (b) safranine T and (c) coomassie brilliant blue R250 by catalysts (C0 is the initial concentration and C is the concentration at any given time of the dye). (d) UV-Vis absorption spectra for methyl violet degradation by CdS/NH2-MIL-125. (e) The changed solution color as the MV degradation proceeds using CdS/NH2-MIL-125.
Fig. 3
Fig. 3. (a) UV-Vis DRS and (b) photocurrent test of samples. (c) Tauc plots of samples. (d) Mott–Schottky plots of CdS and NH2-MIL-125 in a 0.5 M Na2SO4 aqueous solution.

References

    1. Mehta V. P. Eycken E. V. V. Chem. Soc. Rev. 2011;40:4925–4936. doi: 10.1039/C1CS15094D. - DOI - PubMed
    2. Tietze L. F. Chem. Rev. 1996;96:115–136. doi: 10.1021/cr950027e. - DOI - PubMed
    3. List B. Angew. Chem., Int. Ed. 2010;49:1730–1734. doi: 10.1002/anie.200906900. - DOI - PubMed
    4. Gnanaprakasam B. Zhang J. Milstein D. Angew. Chem., Int. Ed. 2010;49:1468–1471. doi: 10.1002/anie.200907018. - DOI - PubMed
    5. Shiroodi R. K. Gevorgyan V. Chem. Soc. Rev. 2013;42:4991–5001. doi: 10.1039/C3CS35514D. - DOI - PMC - PubMed
    6. Li X. Lin B. Li H. Yu Q. Ge Y. Jin X. Liu X. Zhou Y. Xiao J. Appl. Catal., B. 2018;239:254–259. doi: 10.1016/j.apcatb.2018.08.021. - DOI
    7. Wu R. Wang S. Zhou Y. Long J. Dong F. Zhang W. ACS Appl. Nano Mater. 2019;2:6818–6827. doi: 10.1021/acsanm.9b01264. - DOI
    1. Zhu J.-J. Kailasam K. Fischer A. Thomas A. ACS Catal. 2011;1:342–347. doi: 10.1021/cs100153a. - DOI
    2. Wu P.-P. Cao Y. X. Zhao L. M. Wang Y. He Z. K. Xing W. Bai P. Mintova S. Yan Z. F. J. Catal. 2019;375:32–43. doi: 10.1016/j.jcat.2019.05.003. - DOI
    3. Tran U. P. N. Le K. K. A. Phan N. T. S. ACS Catal. 2011;1:120–127. doi: 10.1021/cs1000625. - DOI
    4. Rashidizadeh A. Zand H. R. E. Ghafuri H. Rezazadeh Z. ACS Appl. Nano Mater. 2020;3:7057–7065. doi: 10.1021/acsanm.0c01380. - DOI
    1. Xu Q. Cheng B. Yu J. Liu G. Carbon. 2017;118:241–249. doi: 10.1016/j.carbon.2017.03.052. - DOI
    2. Wu Y.-P. Yang B. Tian J. Yu S.-B. Wang H. Zhang D.-W. Liu Y. Li Z.-T. Chem. Commun. 2017;53:13367–13370. doi: 10.1039/C7CC08824H. - DOI - PubMed
    3. Li Y. Liu M. Chen L. J. Mater. Chem. A. 2017;5:13757–13762. doi: 10.1039/C7TA03776G. - DOI
    4. Meng S. Ning X. Chang S. Fu X. Ye X. Chen S. J. Catal. 2018;357:247–256. doi: 10.1016/j.jcat.2017.11.015. - DOI
    5. Zhang Y. Zhou J. Chen J. Feng X. Cai W. J. Hazard. Mater. 2020;392:122315. doi: 10.1016/j.jhazmat.2020.122315. - DOI - PubMed
    1. Cheng L. Xiang Q. Liao Y. Zhang H. Energy Environ. Sci. 2018;11:1362–1391. doi: 10.1039/C7EE03640J. - DOI
    1. Nasalevich M. A. van der Veen M. Kapteijn F. Gascon J. CrystEngComm. 2014;16:4919. doi: 10.1039/C4CE00032C. - DOI
    2. Gong J. L. Li C. Wasielewski M. R. Chem. Soc. Rev. 2019;48:1862–1864. doi: 10.1039/C9CS90020A. - DOI - PubMed