Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 1;11(61):38667-38673.
doi: 10.1039/d1ra07014b. eCollection 2021 Nov 29.

Graphene oxide-catalyzed trifluoromethylation of alkynes with quinoxalinones and Langlois' reagent

Affiliations

Graphene oxide-catalyzed trifluoromethylation of alkynes with quinoxalinones and Langlois' reagent

Hong Li et al. RSC Adv. .

Abstract

The direct C-H trifluoromethylation of alkynes and quinoxalinones has been achieved using a graphene oxide/Langlois' reagent system. This multi-component tandem reaction using graphene oxide as the catalyst and Langlois' reagent as the robust CF3 radical source results in the formation of olefinic C-CF3 to access a series of 3-trifluoroalkylated quinoxalin-2(1H)-ones.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Representative biologically active quinoxalin-2(1H)-ones.
Scheme 1
Scheme 1. Various trifluoromethylation strategies of organic molecules.
Scheme 2
Scheme 2. Gram-scale preparation of 3a.
Scheme 3
Scheme 3. Mechanistic studies.
Scheme 4
Scheme 4. Proposed catalytic cycle for the trifluoromethylation of alkynes.

Similar articles

Cited by

References

    1. Wu H. Su C. Tandiana R. Liu C. Qiu C. Bao Y. Wu J. Xu Y. Lu J. Fan D. Loh K. P. Angew. Chem., Int. Ed. 2018;57:10848. doi: 10.1002/anie.201802548. - DOI - PubMed
    2. Tan C. Cao X. Wu X.-J. He Q. Yang J. Zhang X. Chen J. Zhao W. Han S. Nam G.-H. Sindoro M. Zhang H. Chem. Rev. 2017;117:6225. doi: 10.1021/acs.chemrev.6b00558. - DOI - PubMed
    3. Chua C. K. Pumera M. Chem.–Eur. J. 2015;21:12550. doi: 10.1002/chem.201501383. - DOI - PubMed
    4. Dreyer D. R. Todd A. D. Bielawski C. W. Chem. Soc. Rev. 2014;43:5288. doi: 10.1039/C4CS00060A. - DOI - PubMed
    5. Navalon S. Dhakshinamoorthy A. Alvaro M. Garcia H. Chem. Rev. 2014;114:6179. doi: 10.1021/cr4007347. - DOI - PubMed
    6. Su C. Loh K. P. Acc. Chem. Res. 2013;46:2275. doi: 10.1021/ar300118v. - DOI - PubMed
    1. Soni J. Sethiya A. Sahiba N. Agarwal S. Appl. Organomet. Chem. 2021:e6162.
    2. Lombardi L. Bandini M. Angew. Chem., Int. Ed. 2020;59:20767. doi: 10.1002/anie.202006932. - DOI - PubMed
    3. Bahuguna A. Kumar A. Krishnan V. Asian J. Org. Chem. 2019;8:1263. doi: 10.1002/ajoc.201900259. - DOI
    4. Zhang J. Chen S. Chen F. Xu W. Gong H. Adv. Synth. Catal. 2017;359:2358. doi: 10.1002/adsc.201700178. - DOI
    5. Tang P. Hu G. Li M. Ma D. ACS Catal. 2016;6:6948. doi: 10.1021/acscatal.6b01668. - DOI
    6. Koehler F. M. Stark W. J. Acc. Chem. Res. 2013;46:2297. doi: 10.1021/ar300125w. - DOI - PubMed
    7. Su C. Acik M. Takai K. Lu J. Hao S. Zheng Y. Wu P. Bao Q. Enoki T. Chabal Y. J. Loh K. P. Nat. Commun. 2012:1298. doi: 10.1038/ncomms2315. - DOI - PubMed
    8. Dhakshinamoorthy A. Alvaro M. Concepción P. Fornés V. Garcia H. Chem. Commun. 2012;48:5443. doi: 10.1039/C2CC31385E. - DOI - PubMed
    9. Su D. S. Zhang J. Frank B. Thomas A. Wang X. Paraknowitsch J. Schlögl R. ChemSusChem. 2010;3:169. doi: 10.1002/cssc.200900180. - DOI - PubMed
    1. Yeh T.-F. Teng C.-Y. Chen L.-C. Chen S.-J. Teng H. J. Mater. Chem. A. 2016;4:2014. doi: 10.1039/C5TA07780J. - DOI
    2. Zhang N. Yang M.-Q. Liu S. Sun Y. Xu Y.-J. Chem. Rev. 2015;115:10307. doi: 10.1021/acs.chemrev.5b00267. - DOI - PubMed
    3. Roy-Mayhew J. D. Aksay I. A. Chem. Rev. 2014;114:6323. doi: 10.1021/cr400412a. - DOI - PubMed
    4. Chung C. Kim Y.-K. Shin D. Ryoo S.-Y. Hong B.-H. Min D.-H. Acc. Chem. Res. 2013;46:2211. doi: 10.1021/ar300159f. - DOI - PubMed
    1. Hu J.-P. Tian C.-Q. Damaneh M. S. Li Y.-L. Cao D.-Y. Lv K.-K. Yu T. Meng T. Chen D.-Q. Wang X. Chen L. Li J. Song S.-S. Huan X.-J. Qin L.-H. Shen J.-K. Wang Y.-Q. Miao Z.-H. Xiong B. J. Med. Chem. 2019;62:8642. doi: 10.1021/acs.jmedchem.9b01094. - DOI - PubMed
    2. Hussain S. Parveen S. Hao X. Zhang S. Wang W. Qin X. Yang Y. Chen X. Zhu S. Zhu C. Ma B. Eur. J. Med. Chem. 2014;80:383. doi: 10.1016/j.ejmech.2014.04.047. - DOI - PubMed
    3. Liu R. Huang Z.-H. Murray M. G. Guo X.-Y. Liu G. J. Med. Chem. 2011;54:5747. doi: 10.1021/jm200394x. - DOI - PubMed
    1. Schiesser S. Chepliaka H. Kollback J. Quennesson T. Czechtizky W. Cox R. J. J. Med. Chem. 2020;63:13076. doi: 10.1021/acs.jmedchem.0c01457. - DOI - PubMed
    2. Oh E. H. Kim H. J. Han S. B. Synthesis. 2018;50:3346. doi: 10.1055/s-0037-1610085. - DOI
    3. Song H.-X. Han Q.-Y. Zhao C.-L. Zhang C.-P. Green Chem. 2018;20:1662. doi: 10.1039/C8GC00078F. - DOI
    4. Yang X. Wu T. Phipps R. J. Toste F. D. Chem. Rev. 2015;115:826. doi: 10.1021/cr500277b. - DOI - PMC - PubMed
    5. Zhu W. Wang J. Wang S. Gu Z. Aceña J. L. Izawa K. Liu H. Soloshonok V. A. J. Fluorine Chem. 2014;167:37. doi: 10.1016/j.jfluchem.2014.06.026. - DOI
    6. Furuya T. Kamlet A. S. Ritter T. Nature. 2011;473:470. doi: 10.1038/nature10108. - DOI - PMC - PubMed