Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 13;10(4):2359-2363.
doi: 10.1039/c9ra10721e. eCollection 2020 Jan 8.

Synthesis of thermoresponsive oligo(ethylene glycol) polymers through radical ring-opening polymerization of vinylcyclopropane monomers

Affiliations

Synthesis of thermoresponsive oligo(ethylene glycol) polymers through radical ring-opening polymerization of vinylcyclopropane monomers

Jovana Stanojkovic et al. RSC Adv. .

Abstract

Polyvinylcyclopropanes are an old class of polymers typically known for their low polymerization-induced shrinkage properties. In this work, we show that they are capable of exhibiting a thermally triggered aggregation process in aqueous solutions. The phase transition is sharp, tunable within the temperature range of 25-46 °C, and relatively insensitive to environmental conditions. It is anticipated that this preliminary study will shine new light on polyvinylcyclopropanes and lead to new avenues in their studies and future application.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Polymerization of vinylcyclopropane monomers via free radical chemistry. Pathway I is preferred due to the propagating radical stabilization by the electron withdrawing R substituents.
Scheme 2
Scheme 2. Synthesis of monomer 1 and polymer 2.
Fig. 1
Fig. 1. 1H-NMR of polymer 2 in deuterated chloroform. Residual solvent signal is shown with an asterisk.
Fig. 2
Fig. 2. Transmittance at 600 nm as a function of temperature (0.5 °C min−1) for aqueous solution (10 mg mL−1) of polymers 2 and 4 (heating cycles, black triangles; cooling cycles, red triangles).
Fig. 3
Fig. 3. Variable temperature 1H-NMR of polymer 2 in deuterated water (10 mg mL−1).
Scheme 3
Scheme 3. Synthesis of copolymer 4.
Fig. 4
Fig. 4. 1H-NMR of polymer 4a–4e in deuterated chloroform. The signal from water is marked with an asterisk.

References

    1. For review articles, see:

    2. Moszner N. Zeuner F. Volkel T. Rheinberger V. Macromol. Chem. Phys. 1999;200:2173–2187. doi: 10.1002/(SICI)1521-3935(19991001)200:10<2173::AID-MACP2173>3.0.CO;2-A. - DOI
    3. Sanda F. Endo T. J. Polym. Sci., Part A: Polym. Chem. 2001;39:265–276. doi: 10.1002/1099-0518(20010115)39:2<265::AID-POLA20>3.0.CO;2-D. - DOI
    4. Tardy A. Nicolas J. Gigmes D. Lefay C. Guillaneuf Y. Chem. Rev. 2017;117:1319–1406. doi: 10.1021/acs.chemrev.6b00319. - DOI - PubMed
    1. For selected examples, see:

    2. Sanda F. Takata T. Endo T. Macromolecules. 1992;25:6719–6721. doi: 10.1021/ma00050a053. - DOI
    3. Sanda F. Takata T. Endo T. Macromolecules. 1993;26:1818–1824. doi: 10.1021/ma00060a004. - DOI
    4. Sugiyama J. Ohashi K. Ueda M. Macromolecules. 1994;27:5543–5546. doi: 10.1021/ma00098a005. - DOI
    5. Sanda F. Takata T. Endo T. Macromolecules. 1995;28:1346–1355. doi: 10.1021/ma00109a003. - DOI
    6. Contreras P. P. Tyagi P. Agarwal S. Polym. Chem. 2015;6:2297–2304. doi: 10.1039/C4PY01705F. - DOI
    7. Contreras P. P. Kuttner C. Fery A. Stahlschmidt U. Jerome V. Freitag R. Agarwal S. Chem. Commun. 2015;51:11899–11902. doi: 10.1039/C5CC03901K. - DOI - PubMed
    8. Contreras P. P. Agarwal S. Polym. Chem. 2016;7:3100–3106. doi: 10.1039/C6PY00411C. - DOI
    9. Chiba H. Kitazume K. Yamada S. Endo T. J. Polym. Sci., Part A: Polym. Chem. 2016;54:39–43. doi: 10.1002/pola.27904. - DOI
    1. Lutz J. F. Hoth A. Macromolecules. 2006;39:893–896. doi: 10.1021/ma0517042. - DOI
    2. Lutz J. F. Akdemir O. Hoth A. J. Am. Chem. Soc. 2006;128:13046–13047. doi: 10.1021/ja065324n. - DOI - PubMed
    3. Lutz J. F. Stiller S. Hoth A. Kaufner L. Pison U. Cartier R. Biomacromolecules. 2006;7:3132–3138. doi: 10.1021/bm0607527. - DOI - PubMed
    4. Lutz J. F. Weichenhan K. Akdemir O. Hoth A. Macromolecules. 2007;40:2503–2508. doi: 10.1021/ma062925q. - DOI
    5. Skrabania K. Kristen J. Laschewsky A. Akdemir O. Hoth A. Lutz J. F. Langmuir. 2007;23:84–93. doi: 10.1021/la061509w. - DOI - PubMed
    6. Lutz J. F. J. Polym. Sci., Part A: Polym. Chem. 2008;46:3459–3470. doi: 10.1002/pola.22706. - DOI
    1. For selected examples of other studies involving oligo(ethylene glycol)-based thermoresponsive polymers, see:

    2. Hedir G. G. Arno M. C. Langlais M. Husband J. T. O'Reilly R. K. Dove A. P. Angew. Chem., Int. Ed. 2017;56:9178–9182. doi: 10.1002/anie.201703763. - DOI - PubMed
    3. Paris R. Liras M. Quijada-Garrido I. Macromol. Chem. Phys. 2011;212:1859–1868.
    4. Han S. Hagiwara M. Ishizone T. Macromolecules. 2003;36:8312–8319. doi: 10.1021/ma0347971. - DOI
    1. For recent review articles covering the area of thermoresponsive polymers, see:

    2. Ward M. A. Georgiou T. K. Polymers. 2011;3:1215–1242. doi: 10.3390/polym3031215. - DOI
    3. Aseyev V. Tenhu H. Winnik F. M. Adv. Polym. Sci. 2011;242:29–89. doi: 10.1007/12_2010_57. - DOI
    4. Gibson M. I. O'Reilly R. K. Chem. Soc. Rev. 2013;42:7204–7213. doi: 10.1039/C3CS60035A. - DOI - PubMed
    5. Roy D. Brooks W. L. A. Sumerlin B. S. Chem. Soc. Rev. 2013;42:7214–7243. doi: 10.1039/C3CS35499G. - DOI - PubMed
    6. Jochum F. D. Theato P. Chem. Soc. Rev. 2013;42:7468–7483. doi: 10.1039/C2CS35191A. - DOI - PubMed
    7. Zhang Q. L. Weber C. Schubert U. S. Hoogenboom R. Mater. Horiz. 2017;4:109–116. doi: 10.1039/C7MH00016B. - DOI
    8. Atanase L. I. Desbrieresc J. Riess G. Prog. Polym. Sci. 2017;73:32–60. doi: 10.1016/j.progpolymsci.2017.06.001. - DOI
    9. Atanase L. I. Riess G. Polymers. 2018;10:62–88. doi: 10.3390/polym10010062. - DOI - PMC - PubMed