Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 17;10(19):11024-11032.
doi: 10.1039/d0ra00808g. eCollection 2020 Mar 16.

Functionalization of C-H bonds in acetophenone oximes with arylacetic acids and elemental sulfur

Affiliations

Functionalization of C-H bonds in acetophenone oximes with arylacetic acids and elemental sulfur

Phuc H Pham et al. RSC Adv. .

Abstract

Fused thieno[3,2-d]thiazoles were synthesized via a coupling of acetophenone ketoximes, arylacetic acids, and elemental sulfur in the presence of Li2CO3 base. Functionalities including chloro, bromo, fluoro, trifluoromethyl, and pyridyl groups were compatible with reaction conditions. High yields and excellent regioselectivities were obtained even if meta-substituted ketoxime acetates were used. Ethyl esters of heteroarylacetic acids were competent substrates, which is very rare in the literature. Our method would offer a convenient protocol to afford polyheterocyclic structures from simple substrates.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Retrosynthesis of 2-aryl benzothienothiazoles.
Scheme 2
Scheme 2. Annulation of arylacetic acid derivativesa. a1a (0.3 mmol), arylacetic acids (0.2 mmol), sulfur (0.6 mmol, 32 g mol−1), Li2CO3 (0.3 mmol), DMSO (1 mL), 120 °C, 3–12 h. Yields are isolated yields. b2 mmol scale. cEthyl esters of arylacetic acids (0.2 mmol) were used.
Scheme 3
Scheme 3. Scope of ketoxime acetatesa. aKetoxime acetates (0.3 mmol), phenylacetic acid 2a (0.2 mmol), sulfur (0.6 mmol, 32 g mol−1), Li2CO3 (0.3 mmol), DMSO (1 mL), 120 °C, 3–12 h. Yields are isolated yields.
Scheme 4
Scheme 4. Mechanistic consideration.
Scheme 5
Scheme 5. Plausible mechanism.
Scheme 6
Scheme 6. Directed C–H functionalization of 2-phenyl benzothienothiazolea. aCondition: 3aa (0.2 mmol), Fe(NO3)3·9H2O (0.4 mmol), anhydrous CuCl2 (20 mol%), K2S2O8 (0.4 mmol), 1,2-dichloroethane (3 mL), 100 °C, 8 h. Yield is isolated yield.

Similar articles

References

    1. For selected examples, see:

    2. Kakiuchi F. Kan S. Igi K. Chatani N. Murai S. J. Am. Chem. Soc. 2003;125:1698. doi: 10.1021/ja029273f. - DOI - PubMed
    3. Kimura N. Kochi T. Kakiuchi F. J. Am. Chem. Soc. 2017;139:14849. doi: 10.1021/jacs.7b08385. - DOI - PubMed
    4. Zhu R.-Y. Li Z.-Q. Park H. S. Senanayake C. H. Yu J.-Q. J. Am. Chem. Soc. 2018;140:3564. doi: 10.1021/jacs.8b01359. - DOI - PMC - PubMed
    5. Xing D. Qi X. Marchant D. Liu P. Dong G. Angew. Chem., Int. Ed. 2019;58:4366. doi: 10.1002/anie.201900301. - DOI - PMC - PubMed
    6. St John-Campbell S. White A. J. P. Bull J. A. Chem. Sci. 2017;8:4840. doi: 10.1039/C7SC01218G. - DOI - PMC - PubMed
    7. Yao Q.-J. Zhang S. Zhan B.-B. Shi B.-F. Angew. Chem., Int. Ed. 2017;56:6617. doi: 10.1002/anie.201701849. - DOI - PubMed
    8. Li B. Seth K. Niu B. Pan L. Yang H. Ge H. Angew. Chem., Int. Ed. 2018;57:3401. doi: 10.1002/anie.201713357. - DOI - PubMed
    9. Chen X.-Y. Sorensen E. J. Chem. Sci. 2018;9:8951. doi: 10.1039/C8SC03606C. - DOI - PMC - PubMed
    10. Xu W. Yoshikai N. Org. Lett. 2018;20:1392. doi: 10.1021/acs.orglett.8b00164. - DOI - PubMed
    11. Hu Y. Zhou B. Chen H. Wang C. Angew. Chem., Int. Ed. 2018;57:12071. doi: 10.1002/anie.201806287. - DOI - PubMed
    1. For review, see:

    2. Huang H. Ji X. Wu W. Jiang H. Chem. Soc. Rev. 2015;44:1155. doi: 10.1039/C4CS00288A. - DOI - PubMed
    3. Selected examples:

    4. Desai L. V. Malik H. A. Sanford M. S. Org. Lett. 2006;8:1141. doi: 10.1021/ol0530272. - DOI - PubMed
    5. Neely J. M. Rovis T. J. Am. Chem. Soc. 2013;135:66. doi: 10.1021/ja3104389. - DOI - PMC - PubMed
    6. Ye B. Cramer N. Angew. Chem., Int. Ed. 2014;53:7896. doi: 10.1002/anie.201404895. - DOI - PubMed
    7. Zhang H. Wang K. Wang B. Yi H. Hu F. Li C. Zhang Y. Wang J. Angew. Chem., Int. Ed. 2014;53:13234. doi: 10.1002/anie.201408555. - DOI - PubMed
    8. Sun B. Yoshino T. Kanai M. Matsunaga S. Angew. Chem., Int. Ed. 2015;54:12968. doi: 10.1002/anie.201507744. - DOI - PubMed
    9. Li Y. Chen H. Qu L.-B. Houk K. N. Lan Y. ACS Catal. 2019;9:7154. doi: 10.1021/acscatal.9b02085. - DOI
    1. Liu S. Liebeskind L. S. J. Am. Chem. Soc. 2008;130:6918. doi: 10.1021/ja8013743. - DOI - PMC - PubMed
    2. Ren Z.-H. Zhang Z.-Y. Yang B.-Q. Wang Y. Y. Guan Z.-H. Org. Lett. 2011;13:5394. doi: 10.1021/ol202290y. - DOI - PubMed
    3. Wei Y. Yoshikai N. J. Am. Chem. Soc. 2013;135:3756. doi: 10.1021/ja312346s. - DOI - PubMed
    4. Huang H. Cai J. Ji X. Xiao F. Chen Y. Deng G.-J. Angew. Chem., Int. Ed. 2016;55:307. doi: 10.1002/anie.201508076. - DOI - PubMed
    5. Zhu C. Zhu R. Zeng H. Chen F. Liu C. Wu W. Jiang H. Angew. Chem., Int. Ed. 2017;56:13324. doi: 10.1002/anie.201707719. - DOI - PubMed
    6. Zhu Z. Tang X. Cen J. Li J. Wu W. Jiang H. Chem. Commun. 2018;54:3767. doi: 10.1039/C8CC00445E. - DOI - PubMed
    1. Selected examples:

    2. Lutz J. P. Hannigan M. D. McNeil A. J. Coord. Chem. Rev. 2018;376:225. doi: 10.1016/j.ccr.2018.07.015. - DOI
    3. Nakanishi I. Itoh S. Suenobu T. Fukuzumi S. Angew. Chem., Int. Ed. 1998;37:992. doi: 10.1002/(SICI)1521-3773(19980420)37:7<992::AID-ANIE992>3.0.CO;2-P. - DOI - PubMed
    4. Zhang C. Zhu X. Acc. Chem. Res. 2017;50:1342. doi: 10.1021/acs.accounts.7b00050. - DOI - PubMed
    5. Cinar M. E. Ozturk T. Chem. Rev. 2015;115:3036. doi: 10.1021/cr500271a. - DOI - PubMed
    1. Nguyen T. B. Retailleau P. Green Chem. 2018;20:387. doi: 10.1039/C7GC03437G. - DOI
    2. Pham P. H. Nguyen K. X. Pham H. T. B. Nguyen T. T. Phan N. T. S. Org. Lett. 2019;21:8795. doi: 10.1021/acs.orglett.9b03414. - DOI - PubMed