Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 11;10(11):6452-6459.
doi: 10.1039/c9ra10618a. eCollection 2020 Feb 7.

Catalysis with magnetically retrievable and recyclable nanoparticles layered with Pd(0) for C-C/C-O coupling in water

Affiliations

Catalysis with magnetically retrievable and recyclable nanoparticles layered with Pd(0) for C-C/C-O coupling in water

Alpesh K Sharma et al. RSC Adv. .

Abstract

Nanoparticles layered with palladium(0) were prepared from nano-sized magnetic Fe3O4 by coating it with silica and then reacting sequentially with phenylselenyl chloride under an N2 atmosphere and palladium(ii) chloride in water. The resulting Fe3O4@SiO2@SePh@Pd(0) NPs are magnetically retrievable and the first example of NPs in which the outermost layer of Pd(0) is mainly held by selenium. The weight percentage of Pd in the NPs was found to be 1.96 by ICP-AES. The NPs were authenticated via TEM, SEM-EDX, XPS, and powder XRD and found to be efficient as catalysts for the C-O and C-C (Suzuki-Miyaura) coupling reactions of ArBr/Cl in water. The oxidation state of Pd in the NPs having size distribution from ∼12 to 18 nm was inferred as zero by XPS. They can be recycled more than seven times. The main features of the proposed protocols are their mild reaction conditions, simplicity, and efficiency as the catalyst can be separated easily from the reaction mixture by an external magnet and reused for a new reaction cycle. The optimum loading (in mol% of Pd) was found to be 0.1-1.0 and 0.01-1.0 for O-arylation and Suzuki-Miyaura coupling, respectively. For ArCl, the required amount of NPs was more as compared to that needed for ArBr. The nature of catalysis is largely heterogeneous.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. The synthesis of Fe3O4@SiO2@SePh@Pd(0) NPs.
Fig. 1
Fig. 1. PXRD of Fe3O4@SiO2@SePh@Pd(0) NPs.
Fig. 2
Fig. 2. The XPS spectra of Fe3O4@SiO2@SePh@Pd(0) NPs.
Fig. 3
Fig. 3. The TEM images of Fe3O4@SiO2@SePh@Pd(0) NPs at 20 nm scale bar.
Fig. 4
Fig. 4. Time profiles of Suzuki–Miyaura and C–O coupling of 4-bromobenzaldehyde (1 mmol); catalyst, (0.1 mol%); phenyl boronic acid (for SMC), phenol (for C–O coupling), (1.2 mmol); K2CO3 (for SMC), NaOH (for C–O coupling) (1.5 mmol); water 5 mL; bath temperature, 80 °C; isolated yield in %.
Fig. 5
Fig. 5. Recycling experiments.
Fig. 6
Fig. 6. The TEM image of recycled Fe3O4@SiO2@SePh@Pd(0) NPs at 100 nm scale bar.

References

    1. Rafiee E. Eavani S. Green Chem. 2011;13:2116. doi: 10.1039/C1GC15291B. - DOI
    2. Dálaigh C. Ó. Corr S. A. Gun’ko Y. Connon S. J. Angew. Chem., Int. Ed. 2007;46:4329. doi: 10.1002/anie.200605216. - DOI - PubMed
    3. Lai D. M. Deng L. Li J. Liao B. Guo Q. X. Fu Y. ChemSusChem. 2011;4:55. doi: 10.1002/cssc.201000300. - DOI - PubMed
    4. Zhang Y. Xia C. G. Appl. Catal., A. 2009;366:141. doi: 10.1016/j.apcata.2009.06.041. - DOI
    5. Zheng X. X. Luo S. Z. Zhang L. Cheng J. P. Green Chem. 2009;11:455. doi: 10.1039/B823123K. - DOI
    1. Polshettiwar V. Varma R. S. Green Chem. 2010;12:743. doi: 10.1039/B921171C. - DOI
    1. Lu A.-H. Salabas E. L. Schüth F. Angew. Chem., Int. Ed. 2007;46:1222. doi: 10.1002/anie.200602866. - DOI - PubMed
    2. Zhu Y. Stubbs L. P. Ho F. Liu R. Ship C. P. Maguire J. A. Hosmane N. S. ChemCatChem. 2010;2:365. doi: 10.1002/cctc.200900314. - DOI
    1. Polshettiwar V. Varma R. S. Org. Biomol. Chem. 2009;7:37. doi: 10.1039/B817669H. - DOI - PubMed
    1. Abu-Reziq R. Alper H. Wang D. S. Post M. L. J. Am. Chem. Soc. 2006;128:5279. doi: 10.1021/ja060140u. - DOI - PubMed
    2. Chouhan G. Wang D. S. Alper H. Chem. Commun. 2007:4809. doi: 10.1039/B711298J. - DOI - PubMed
    3. Hara T. Kaneta T. Mori K. Mitsudome T. Mizugaki T. Ebitani K. Kaneda K. Green Chem. 2007;9:1246. doi: 10.1039/B704912A. - DOI
    4. Jin M. J. Lee D. H. Angew. Chem., Int. Ed. 2010;49:1119. doi: 10.1002/anie.200905626. - DOI - PubMed
    5. Yang H. Q. Wang Y. Qin Y. Chong Y. Yang Q. Li G. Zhang L. Li W. Green Chem. 2011;13:1352. doi: 10.1039/C0GC00955E. - DOI
    6. Garca-Garrido S. E. Francos J. Cadierno V. Basset J.-M. Polshettiwar V. ChemSusChem. 2011;4:104. doi: 10.1002/cssc.201000280. - DOI - PubMed