Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Mar 5;10(16):9563-9578.
doi: 10.1039/d0ra00377h. eCollection 2020 Mar 2.

Synthesis and application in asymmetric catalysis of P-stereogenic pincer-metal complexes

Affiliations
Review

Synthesis and application in asymmetric catalysis of P-stereogenic pincer-metal complexes

Yijun Xiang et al. RSC Adv. .

Abstract

P-stereogenic pincer-metal complexes are one of the most interesting pincer type organometallic compounds. Many kinds of this type of complexes were synthesized and used as catalysts in asymmetric catalysis. On the basis of our work in this field, this paper reports the recent progress in P-stereogenic pincer chemistry, including the synthesis of P-stereogenic pincer ligands, the synthesis of P-stereogenic pincer-metal complexes, and the achievements in P-stereogenic pincer-metal complex catalyzed asymmetric synthesis.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Represent complexes of four type chiral pincers.
Fig. 2
Fig. 2. The P-stereogenic pincer–metal complexes.
Scheme 1
Scheme 1. Synthesis of P-stereogenic pincer ligands.
Fig. 3
Fig. 3. Classical P-stereogenic pincer ligands synthesized by condensation of P-stereogenic synthons and halohydrocarbons.
Scheme 2
Scheme 2. Synthesis of P-stereogenic pincer ligands by asymmetric catalytic synthesis.
Scheme 3
Scheme 3. Synthesis of P-stereogenic pincer ligands by diastereomeric resolution.
Scheme 4
Scheme 4. Synthesis of the non-classic P-stereogenic pincer ligands reported by Gavrilov.
Scheme 5
Scheme 5. Synthesis of the non-classic P-stereogenic pincer ligands reported by Gebbink.
Scheme 6
Scheme 6. Synthesis of P-stereogenic pincer–Pd complex via C–H activation reported by van Koten.
Scheme 7
Scheme 7. Synthesis of P-stereogenic pincer–Ir and pincer–Ni complexes by C–H activation.
Scheme 8
Scheme 8. Synthesis of P-stereogenic pincer–Pd complexes via C–H activation reported by Song.
Scheme 9
Scheme 9. Synthesis of the unsymmetrical P-stereogenic pincer–metal complexes via oxidative addition reported by Song.
Scheme 10
Scheme 10. P-stereogenic pincer complexes reported by Wanbin Zhang.
Scheme 11
Scheme 11. Synthesis of P-stereogenic pincer complexes via oxidative addition reported by van Koten.
Scheme 12
Scheme 12. Synthesis of P-stereogenic pincer complex via oxidative addition reported by Gebbink.
Scheme 13
Scheme 13. Synthesis of P-stereogenic pincer complexes via transcyclometalation.
Scheme 14
Scheme 14. Synthesis of P-stereogenic pincer complex via direct coordination reported by Wanbin Zhang.
Scheme 15
Scheme 15. Synthesis of P-stereogenic pincer complex via direct coordination reported by Castillón.
Scheme 16
Scheme 16. Synthesis of P-stereogenic pincer complex via direct coordination reported by Mezzetti.
Scheme 17
Scheme 17. PNPo-An,Ph pincer–Pd complexes catalyzed asymmetric allylic alkylation.
Scheme 18
Scheme 18. POCOP pincer–Pd complexes catalyzed asymmetric homoallylation of sulfonimines.
Scheme 19
Scheme 19. P-stereogenic pincer–Pd and pincer–Ni complexes catalyzed asymmetric allylation of aldehydes and sulfonimines.
Scheme 20
Scheme 20. PNPo-An,Ph pincer–Ru complexes catalyzed asymmetric hydrosilylation.
Scheme 21
Scheme 21. Aldol condensation of methyl 2-isocyanoacetate and benzaldehyde.
Scheme 22
Scheme 22. Hydrogen transfer reaction of acetophenone by ruthenium.
Scheme 23
Scheme 23. Pincer–Pd catalyzed asymmetric Michael addition of diarylphosphine to nitroalkenes and β,γ-unsaturated α-ketoesters.
Scheme 24
Scheme 24. P-stereogenic pincer–Ni catalyzed asymmetric aza-Michael reaction.
Scheme 25
Scheme 25. PNPtBu,Ph Pincer–Ru complexes catalyzed asymmetric hydrogenation.
Scheme 26
Scheme 26. PNPtBu,Me pincer–Ir complexes catalyzed asymmetric hydrogenation.
Scheme 27
Scheme 27. P-stereogenic pincer–Fe catalyzed asymmetric hydrogenation of acetophenone.
Scheme 28
Scheme 28. P-stereogenic pincer–Pd catalyzed asymmetric intramolecular hydroamination.
Scheme 29
Scheme 29. Proposed reaction pathway of P-stereogenic pincer–Pd catalyzed asymmetric intramolecular hydroamination.
Scheme 30
Scheme 30. P-stereogenic pincer–Pd catalyzed asymmetric allylic sulfonylation and deracemization.
None
Yijun Xiang
None
Qianyi Ge
None
Shulei Wu
None
Xing Zheng
None
Zehua Yang

References

    1. Kelly W. S. J. Ford G. H. Nelson S. M. J. Chem. Soc. A. 1971:388–396. doi: 10.1039/J19710000388. - DOI
    1. Terheijden J. van Koten G. Mul W. P. Stufkens D. J. Muller F. Stam C. H. Organometallics. 1986;5:519–525. doi: 10.1021/om00134a021. - DOI
    1. Van Der Vlugt J. I. Angew. Chem., Int. Ed. 2010;49:252–255. doi: 10.1002/anie.200904795. - DOI - PubMed
    2. Choi J. Macarthur A. H. R. Brookhart M. Goldman A. S. Chem. Rev. 2011;111:1761–1779. doi: 10.1021/cr1003503. - DOI - PubMed
    3. Selander N. Szabo K. J. Chem. Rev. 2011;111:2048–2076. doi: 10.1021/cr1002112. - DOI - PubMed
    4. Robert T. Oestreich M. Angew. Chem., Int. Ed. 2013;52:5216–5218. doi: 10.1002/anie.201301205. - DOI - PubMed
    5. Gunanathan C. Milstein D. Chem. Rev. 2014;114:12024–12087. doi: 10.1021/cr5002782. - DOI - PubMed
    6. Chakraborty S. Bhattacharya P. Dai H. Guan H. Acc. Chem. Res. 2015;48:1995–2003. doi: 10.1021/acs.accounts.5b00055. - DOI - PubMed
    7. Bezdek M. J. Chirik P. J. Angew. Chem., Int. Ed. 2016;55:7892–7896. doi: 10.1002/anie.201603142. - DOI - PubMed
    8. Kumar A. Bhatti T. M. Goldman A. S. Chem. Rev. 2017;117:12357–12384. doi: 10.1021/acs.chemrev.7b00247. - DOI - PubMed
    9. Wang Z. Solan G. A. Zhang W. Sun W.-H. Coord. Chem. Rev. 2018;363:92–108. doi: 10.1016/j.ccr.2018.02.016. - DOI
    10. Alig L. Fritz M. Schneider S. Chem. Rev. 2019;119:2681–2751. doi: 10.1021/acs.chemrev.8b00555. - DOI - PubMed
    1. Zuo Z. Xu S. Zhang L. Gan L. Fang H. Liu G. Huang Z. Organometallics. 2019;38:3906–3911. doi: 10.1021/acs.organomet.9b00067. - DOI
    2. Zhang L. Tang Y. Han Z. Ding K. Angew. Chem., Int. Ed. 2019;58:4973–4977. doi: 10.1002/anie.201814751. - DOI - PubMed
    3. Tay W. S. Yang X.-Y. Li Y. Pullarkat S. A. Leung P.-H. Dalton Trans. 2019;48:4602–4610. doi: 10.1039/C9DT00221A. - DOI - PubMed
    4. Nakamura S. Tokunaga A. Saito H. Kondo M. Chem. Commun. 2019;55:5391–5394. doi: 10.1039/C9CC02443C. - DOI - PubMed
    5. Liu H. Yuan H. Shi X. Dalton Trans. 2019;48:609–617. doi: 10.1039/C8DT04413A. - DOI - PubMed
    6. Huber R. Passera A. Mezzetti A. Chem. Commun. 2019;55:9251–9266. doi: 10.1039/C9CC03910D. - DOI - PubMed
    7. Garbe M. Wei Z. Tannert B. Spannenberg A. Jiao H. Bachmann S. Scalone M. Junge K. Beller M. Adv. Synth. Catal. 2019;361:1913–1920. doi: 10.1002/adsc.201801511. - DOI
    8. Deak N. Thillaye Du Boullay O. Moraru I.-T. Mallet-Ladeira S. Madec D. Nemes G. Dalton Trans. 2019;48:2399–2406. doi: 10.1039/C8DT05116J. - DOI - PubMed
    9. Arai T. Araseki K. Kakino J. Org. Lett. 2019;21:8572–8576. doi: 10.1021/acs.orglett.9b03148. - DOI - PubMed
    10. Yan J. Wang Y.-B. Zhu Z.-H. Li Y. Zhu X. Hao X.-Q. Song M.-P. Organometallics. 2018;37:2325–2334. doi: 10.1021/acs.organomet.8b00300. - DOI
    11. Wan Q. Xiao X.-S. To W.-P. Lu W. Chen Y. Low K.-H. Che C.-M. Angew. Chem., Int. Ed. 2018;57:17189–17193. doi: 10.1002/anie.201811943. - DOI - PubMed
    12. Seidel F. W. Friess S. Heinemann F. W. Chelouan A. Scheurer A. Grasruck A. Herrera A. Dorta R. Organometallics. 2018;37:1160–1171. doi: 10.1021/acs.organomet.8b00038. - DOI
    13. Schiwek C. H. Vasilenko V. Wadepohl H. Gade L. H. Chem. Commun. 2018;54:9139–9142. doi: 10.1039/C8CC05172K. - DOI - PubMed
    14. Huber R. Passera A. Mezzetti A. Organometallics. 2018;37:396–405. doi: 10.1021/acs.organomet.7b00816. - DOI
    15. Chen X. Cheng Z. Guo J. Lu Z. Nat. Commun. 2018;9:1–8. doi: 10.1038/s41467-017-02088-w. - DOI - PMC - PubMed
    16. Chen X. Cheng Z. Guo J. Lu Z. Nat. Commun. 2018;9:3939. doi: 10.1038/s41467-018-06240-y. - DOI - PMC - PubMed
    17. Wenz J. Wadepohl H. Gade L. H. Chem. Commun. 2017;53:4308–4311. doi: 10.1039/C7CC01655G. - DOI - PubMed
    18. Vasilenko V. Blasius C. K. Wadepohl H. Gade L. H. Angew. Chem., Int. Ed. 2017;56:8393–8397. doi: 10.1002/anie.201704184. - DOI - PubMed
    19. Marcum J. S. Roberts C. C. Manan R. S. Cervarich T. N. Meek S. J. J. Am. Chem. Soc. 2017;139:15580–15583. doi: 10.1021/jacs.7b08575. - DOI - PubMed
    20. Kondo M. Omori M. Hatanaka T. Funahashi Y. Nakamura S. Angew. Chem., Int. Ed. 2017;56:8677–8680. doi: 10.1002/anie.201702429. - DOI - PubMed
    21. Garbe M. Junge K. Walker S. Wei Z. Jiao H. Spannenberg A. Bachmann S. Scalone M. Beller M. Angew. Chem., Int. Ed. 2017;56:11237–11241. doi: 10.1002/anie.201705471. - DOI - PubMed
    22. Liu J.-K. Gong J.-F. Song M.-P. Org. Biomol. Chem. 2019;17:6069–6098. doi: 10.1039/C9OB00401G. - DOI - PubMed
    1. Zhao N. Hou G. Deng X. Zi G. Walter M. D. Dalton Trans. 2014;43:8261–8272. doi: 10.1039/C4DT00510D. - DOI - PubMed
    2. Bonnet S. Li J. Siegler M. A. Von Chrzanowski L. S. Spek A. L. van Koten G. Klein Gebbink R. J. M. Chem.–Eur. J. 2009;15:3340–3343. doi: 10.1002/chem.200900117. - DOI - PubMed
    3. Strong E. T. J. Cardile S. A. Brazeau A. L. Jennings M. C. Mcdonald R. Jones N. D. Inorg. Chem. 2008;47:10575–10586. doi: 10.1021/ic8011926. - DOI - PubMed
    4. Kuznetsov V. F. Gusev D. G. Organometallics. 2007;26:5661–5666. doi: 10.1021/om700651g. - DOI
    5. Kuznetsov V. F. Lough A. J. Gusev D. G. Inorg. Chim. Acta. 2006;359:2806–2811. doi: 10.1016/j.ica.2005.11.010. - DOI
    6. Slagt M. Q. Stiriba S.-E. Kautz H. Gebbink R. J. M. K. Frey H. van Koten G. Organometallics. 2004;23:1525–1532. doi: 10.1021/om030603u. - DOI
    7. Kuznetsov V. F. Lough A. J. Gusev D. G. Chem. Commun. 2002:2432–2433. doi: 10.1039/B208325F. - DOI - PubMed
    8. Tulloch A. a. D. Danopoulos A. A. Tizzard G. J. Coles S. J. Hursthouse M. B. Hay-Motherwell R. S. Motherwell W. B. Chem. Commun. 2001:1270–1271. doi: 10.1039/B103330C. - DOI
    9. Gimenez R. Swager T. M. J. Mol. Catal. A: Chem. 2001;166:265–273. doi: 10.1016/S1381-1169(00)00420-9. - DOI