Highly stretchable organic electrochemical transistors with strain-resistant performance
- PMID: 35501364
- DOI: 10.1038/s41563-022-01239-9
Highly stretchable organic electrochemical transistors with strain-resistant performance
Abstract
Realizing fully stretchable electronic materials is central to advancing new types of mechanically agile and skin-integrable optoelectronic device technologies. Here we demonstrate a materials design concept combining an organic semiconductor film with a honeycomb porous structure with biaxially prestretched platform that enables high-performance organic electrochemical transistors with a charge transport stability over 30-140% tensional strain, limited only by metal contact fatigue. The prestretched honeycomb semiconductor channel of donor-acceptor polymer poly(2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-diketo-pyrrolopyrrole-alt-2,5-bis(3-triethyleneglycoloxy-thiophen-2-yl) exhibits high ion uptake and completely stable electrochemical and mechanical properties over 1,500 redox cycles with 104 stretching cycles under 30% strain. Invariant electrocardiogram recording cycles and synapse responses under varying strains, along with mechanical finite element analysis, underscore that the present stretchable organic electrochemical transistor design strategy is suitable for diverse applications requiring stable signal output under deformation with low power dissipation and mechanical robustness.
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Comment in
-
Stretching out transistors.Nat Mater. 2022 May;21(5):495-497. doi: 10.1038/s41563-022-01247-9. Nat Mater. 2022. PMID: 35501366 No abstract available.
Similar articles
-
Stretchable Redox-Active Semiconducting Polymers for High-Performance Organic Electrochemical Transistors.Adv Mater. 2022 Jun;34(23):e2201178. doi: 10.1002/adma.202201178. Epub 2022 May 2. Adv Mater. 2022. PMID: 35448913
-
Stretchable semiconducting polymer aerogel transistors for high-performance biosensors and artificial synapses.Biomaterials. 2025 Nov;322:123416. doi: 10.1016/j.biomaterials.2025.123416. Epub 2025 May 16. Biomaterials. 2025. PMID: 40383088
-
Intrinsically stretchable and healable semiconducting polymer for organic transistors.Nature. 2016 Nov 17;539(7629):411-415. doi: 10.1038/nature20102. Nature. 2016. PMID: 27853213
-
Skin-Inspired Electronics: An Emerging Paradigm.Acc Chem Res. 2018 May 15;51(5):1033-1045. doi: 10.1021/acs.accounts.8b00015. Epub 2018 Apr 25. Acc Chem Res. 2018. PMID: 29693379 Review.
-
Organic Electrochemical Transistors (OECTs) Toward Flexible and Wearable Bioelectronics.Molecules. 2020 Nov 13;25(22):5288. doi: 10.3390/molecules25225288. Molecules. 2020. PMID: 33202778 Free PMC article. Review.
Cited by
-
In situ continuous hydrogen-bonded engineering for intrinsically stretchable and healable high-mobility polymer semiconductors.Sci Adv. 2024 Oct 4;10(40):eadq0171. doi: 10.1126/sciadv.adq0171. Epub 2024 Oct 2. Sci Adv. 2024. PMID: 39356754 Free PMC article.
-
2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds.Sci Adv. 2023 Jan 13;9(2):eadd9627. doi: 10.1126/sciadv.add9627. Epub 2023 Jan 11. Sci Adv. 2023. PMID: 36630506 Free PMC article.
-
Over 60 h of Stable Water-Operation for N-Type Organic Electrochemical Transistors with Fast Response and Ambipolarity.Adv Sci (Weinh). 2024 Aug;11(29):e2400872. doi: 10.1002/advs.202400872. Epub 2024 May 29. Adv Sci (Weinh). 2024. PMID: 38810112 Free PMC article.
-
Organic Electrochemical Transistors for Biomarker Detections.Adv Sci (Weinh). 2024 Jul;11(27):e2305347. doi: 10.1002/advs.202305347. Epub 2024 Jan 23. Adv Sci (Weinh). 2024. PMID: 38263718 Free PMC article. Review.
-
Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale.Nat Commun. 2024 Apr 1;15(1):2814. doi: 10.1038/s41467-024-47184-w. Nat Commun. 2024. PMID: 38561403 Free PMC article.
References
-
- Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic-electronic conductors. Nat. Mater. 19, 13–26 (2020). - DOI
-
- Zeglio, E. & Inganas, O. Active materials for organic electrochemical transistors. Adv. Mater. 30, 1800941 (2018). - DOI
-
- Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013). - DOI
-
- White, H. S., Kittlesen, G. P. & Wrighton, M. S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Chem. Soc. 106, 5375–5377 (1984). - DOI
-
- Li, Y., Wang, N., Yang, A., Ling, H. & Yan, F. Biomimicking stretchable organic electrochemical transistor. Adv. Electron. Mater. 5, 1900566 (2019). - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous