Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;14(9):537-547.
doi: 10.2217/epi-2021-0521. Epub 2022 May 4.

Comparison of methylation episignatures in KMT2B- and KMT2D-related human disorders

Affiliations
Free article

Comparison of methylation episignatures in KMT2B- and KMT2D-related human disorders

Sunwoo Lee et al. Epigenomics. 2022 May.
Free article

Abstract

Aim & methods: To investigate peripheral blood methylation episignatures in KMT2B-related dystonia (DYT-KMT2B), the authors undertook genome-wide methylation profiling of ∼2 M CpGs using a next-generation sequencing-based assay and compared the findings with those in controls and patients with KMT2D-related Kabuki syndrome type 1 (KS1). Results: A total of 1812 significantly differentially methylated CpG positions (false discovery rate < 0.05) were detected in DYT-KMT2B samples compared with controls. Multi-dimensional scaling analysis showed that the 10 DYT-KMT2B samples clustered together and separately from 29 controls and 10 with pathogenic variants in KMT2D. The authors found that most differentially methylated CpG positions were specific to one disorder and that all (DYT-KMT2B) and most (Kabuki syndrome type 1) methylation alterations in CpG islands were gain of methylation events. Conclusion: Using sensitive methylation profiling methodology, the authors replicated recent reports of a methylation episignature for DYT-KMT2B. These findings will facilitate the development of episignature-based assays to improve diagnostic accuracy.

Keywords: Kabuki syndrome; chromatin disorders; early-onset dystonia; histone lysine methyltransferases (KMTs); methylation; neurodevelopmental disorder.

Plain language summary

The authors compared the DNA methylation patterns in blood from individuals with two rare neurodevelopmental disorders (childhood-onset dystonia [DYT-KMT2B] and Kabuki syndrome type 1) and healthy control samples. These two disorders are associated with pathogenic variants in KMT2B and KMT2D, which encode proteins with related functions but cause distinct inherited disorders. Comparison of the methylation patterns in the two disorders showed that most DNA regions with altered methylation patterns differed between the two disorders and controls. These findings suggest that analyzing DNA methylation patterns could improve diagnostic testing for these disorders and might provide insights into how the clinical features of these disorders are caused.

PubMed Disclaimer

Publication types

MeSH terms

Supplementary concepts