Electrostatic Complementarity in Structure-Based Drug Design
- PMID: 35512344
- DOI: 10.1021/acs.jmedchem.2c00164
Electrostatic Complementarity in Structure-Based Drug Design
Abstract
Optimization of electrostatic complementarity is an important strategy in structure-based drug discovery for improving the affinity of molecules against a specific protein target. In this Miniperspective we identify examples where deliberate optimization of protein-ligand electrostatic complementarity or intramolecular electrostatic interactions gave improvements in target affinity (up to 250-fold), physicochemical properties, in vitro properties, and off-target selectivity. We also look retrospectively at a series of factor Xa inhibitors that show an almost 8000-fold range in potency that can be correlated with the calculated electrostatic potential (ESP) surfaces. Recent developments using a graph-convolutional deep neural network to rapidly generate high quality ESP surfaces have the potential to make this useful tool more accessible for a wider audience within the field of medicinal chemistry.
Similar articles
-
Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional Deep Neural Network.J Med Chem. 2020 Aug 27;63(16):8778-8790. doi: 10.1021/acs.jmedchem.9b01129. Epub 2019 Sep 25. J Med Chem. 2020. PMID: 31553186
-
Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes.J Med Chem. 2019 Mar 28;62(6):3036-3050. doi: 10.1021/acs.jmedchem.8b01925. Epub 2019 Mar 13. J Med Chem. 2019. PMID: 30807144
-
Electrostatic complementarity between proteins and ligands. 2. Ligand moieties.J Comput Aided Mol Des. 1994 Oct;8(5):527-44. doi: 10.1007/BF00123664. J Comput Aided Mol Des. 1994. PMID: 7876899
-
Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.Chem Res Toxicol. 2011 Sep 19;24(9):1420-56. doi: 10.1021/tx200211v. Epub 2011 Jul 26. Chem Res Toxicol. 2011. PMID: 21790149 Review.
-
Methods of Exploring Protein-Ligand Interactions to Guide Medicinal Chemistry Efforts.Methods Mol Biol. 2018;1705:159-177. doi: 10.1007/978-1-4939-7465-8_7. Methods Mol Biol. 2018. PMID: 29188562 Review.
Cited by
-
Based on theoretical design simultaneous analysis of multiple neonicotinoid pesticides in beeswax by deep eutectic solvents extraction combined with UHPLC-MS/MS.Food Chem X. 2024 Dec 7;25:102073. doi: 10.1016/j.fochx.2024.102073. eCollection 2025 Jan. Food Chem X. 2024. PMID: 39758060 Free PMC article.
-
Generative Deep Learning for de Novo Drug Design─A Chemical Space Odyssey.J Chem Inf Model. 2025 Jul 28;65(14):7352-7372. doi: 10.1021/acs.jcim.5c00641. Epub 2025 Jul 9. J Chem Inf Model. 2025. PMID: 40632942 Free PMC article. Review.
-
Bluues_cplx: Electrostatics at Protein-Protein and Protein-Ligand Interfaces.Molecules. 2025 Jan 3;30(1):159. doi: 10.3390/molecules30010159. Molecules. 2025. PMID: 39795215 Free PMC article.
-
Gadolinium-Based NMR Spin Relaxation Measurements of Near-Surface Electrostatic Potentials of Biomolecules.J Am Chem Soc. 2024 Jul 31;146(30):20788-20801. doi: 10.1021/jacs.4c04433. Epub 2024 Jul 19. J Am Chem Soc. 2024. PMID: 39028837 Free PMC article.
-
Shikimate Kinase-Like 1 Participates in an Ancient and Conserved Role Contributing to Chloroplast Biogenesis in Land Plants.Mol Biol Evol. 2025 Jun 4;42(6):msaf129. doi: 10.1093/molbev/msaf129. Mol Biol Evol. 2025. PMID: 40452216 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Chemical Information