Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 1:306:119397.
doi: 10.1016/j.envpol.2022.119397. Epub 2022 May 2.

Response and contribution of bacterial and archaeal communities to eutrophication in urban river sediments

Affiliations

Response and contribution of bacterial and archaeal communities to eutrophication in urban river sediments

Juejie Yang et al. Environ Pollut. .

Abstract

Excessive loading of nitrogen (N) and phosphorus (P) that leads to eutrophication mutually interacts with sediment microbial community. To unravel the microbial community structures and interaction networks in the urban river sediments with the disturbance of N and P loadings, we used high-throughput sequencing analysis and ecological co-occurrence network methods to investigate the responses of diversity and community composition of bacteria and archaea and identify the keystone species in river sediments. The alpha-diversity of archaea significantly decreased with the increased total nitrogen (TN), whereas the operational taxonomic unit (OTU) number of bacteria increased with the increase of available phosphorus (AP). The beta-diversity of archaea and bacteria was more sensitive to N content than P content. The relative abundance of predominant bacterial and archaeal taxa varied differently in terms of different N and P contents. Complexity and connectivity of bacteria and archaea interaction networks showed significant variations with eutrophication, and competition between bacteria became more significant with the increase of N content. The sensitive and the highest connective species (keystone species) were identified for different N and P loadings. Total carbon (TC), water content (WC), microbial alpha-diversity and interaction networks played pivotal roles in the N and P transformation in urban river sediments.

Keywords: Eutrophication; Microbial community; Microbial interaction networks; Nitrogen and phosphorus; Urban river sediment.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources