Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 26;9(35):19917-19923.
doi: 10.1039/c9ra03403j. eCollection 2019 Jun 25.

Quick construction of a C-N bond from arylsulfonyl hydrazides and Csp2-X compounds promoted by DMAP at room temperature

Affiliations

Quick construction of a C-N bond from arylsulfonyl hydrazides and Csp2-X compounds promoted by DMAP at room temperature

Kai Yang et al. RSC Adv. .

Abstract

An efficient approach for C-N bond construction by the coupling reaction of arylsulfonyl hydrazides and Csp2-X compounds is described for the first time with good yields at room temperature. The reaction promoted by the simple base DMAP displays excellent regioselectivity as well as high functional group tolerance with 41 examples. Even for inactive Csp2-Cl compounds, the metal-free transformation also affords a satisfactory yield after prolonging the reaction time, which is comparable to that of the corresponding Csp2-Br compound. The good effect of DMAP and its action mechanism are confirmed by the competitive experiments of reactivity between Cl-substituted and Br-substituted substrates and the single-crystal X-ray analysis of the key intermediate quaternary ammonium salt. Importantly, the application of this method for a gram-scale (even over 10 g) preparation can be accomplished.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. The reaction of arylsulfonyl hydrazides with halides.
Scheme 2
Scheme 2. Regioselectivity of reaction.
Scheme 3
Scheme 3. Control experiments.
Scheme 4
Scheme 4. Plausible reaction mechanism.

Similar articles

Cited by

References

    1. Campbell N. E. Sammis G. M. Angew. Chem., Int. Ed. 2014;53:6228. doi: 10.1002/anie.201403234. - DOI - PubMed
    1. Namba K. Takeuchi K. Kaihara Y. Oda M. Nakayama A. Nakayama A. Yoshida M. Tanino K. Nat. Commun. 2015;6:8731. doi: 10.1038/ncomms9731. - DOI - PMC - PubMed
    2. Huang Z.-X. Wang C.-P. Dong G.-B. Angew. Chem., Int. Ed. 2016;55:5299. doi: 10.1002/anie.201600912. - DOI - PubMed
    3. Sun Q. Li L.-G. Liu L.-Y. Guan Q.-Q. Yang Y. Zha Z.-G. Wang Z.-Y. Org. Lett. 2018;20:5592. doi: 10.1021/acs.orglett.8b02268. - DOI - PubMed
    1. Yang F. L. Ma X. T. Tian S. K. Chem.–Eur. J. 2012;18:1582. doi: 10.1002/chem.201103671. - DOI - PubMed
    2. Yuen O. Y. So C. M. Kwong F. Y. RSC Adv. 2016;6:27584. doi: 10.1039/C6RA03188A. - DOI
    3. Shang Y. H. Appl. Organomet. Chem. 2018;32:e4484. doi: 10.1002/aoc.4484. - DOI
    1. Li S.-Y. Li X. Yang F. Wu Y.-J. Org. Chem. Front. 2015;2:1076. doi: 10.1039/C5QO00212E. - DOI
    2. Zhao Y. Lai Y.-L. Du K.-S. Lin D.-Z. Huang J.-M. J. Org. Chem. 2017;82:9655. doi: 10.1021/acs.joc.7b01741. - DOI - PubMed
    3. Peng Z.-H. Zheng X. Zhang Y.-J. An D.-L. Dong W.-R. Green Chem. 2018;20:1760. doi: 10.1039/C8GC00381E. - DOI
    4. Zhu X.-T. Lu Q.-L. Wang X. Zhang T.-S. Hao W.-J. Tu S.-J. Jiang B. J. Org. Chem. 2018;83:9890. doi: 10.1021/acs.joc.8b01343. - DOI - PubMed
    5. Liu L.-X. Sun K. Su L.-B. Dong J.-Y. Cheng L. Zhu X. D. Au C. T. Zhou Y. B. Yin S. F. Org. Lett. 2018;20:4023. doi: 10.1021/acs.orglett.8b01585. - DOI - PubMed
    6. Ni J.-B. Xue Y. Sun L.-P. Zhang A. J. Org. Chem. 2018;83:4598. doi: 10.1021/acs.joc.8b00341. - DOI - PubMed
    7. Yao B. Miao T. Li P. Wang L. Org. Lett. 2019;21:124. doi: 10.1021/acs.orglett.8b03564. - DOI - PubMed
    1. Zhang G. Y. Lv S. S. Shoberu A. Zou J. P. J. Org. Chem. 2017;82:9801. doi: 10.1021/acs.joc.7b01121. - DOI - PubMed
    2. Yu Q. Yang Y. Wan J.-P. Liu Y. J. Org. Chem. 2018;83:11385. doi: 10.1021/acs.joc.8b01658. - DOI - PubMed
    3. Bao Y.-S. Yang X.-Q. Zhou Q.-F. Yang F. Org. Lett. 2018;20:1966. doi: 10.1021/acs.orglett.8b00511. - DOI - PubMed
    4. Yang Z. Yan Y.-Q. Li A. Liao J.-S. Zhang L. Yang T. Zhou C.-S. New J. Chem. 2018;42:14738. doi: 10.1039/C8NJ03461C. - DOI
    5. Hou Y.-L. Zhu L.-Y. Hu H. Chen S.-W. Li Z.-F. Liu Y. J. Gong P. New J. Chem. 2018;42:8752. doi: 10.1039/C8NJ01145A. - DOI