Enantioselective amination of 4-alkylisoquinoline-1,3(2 H,4 H)-dione derivatives
- PMID: 35514906
- PMCID: PMC9058008
- DOI: 10.1039/d0ra07806a
Enantioselective amination of 4-alkylisoquinoline-1,3(2 H,4 H)-dione derivatives
Abstract
A mild and efficient enantioselective amination of 4-alkylisoquinoline-1,3(2H,4H)-dione derivatives was established, which is compatible with a broad range of substrates and delivers the final products in excellent yields (up to 99%) and ee values (up to 99%) with low catalyst loading (down to 1 mol%). The synthetic potential of this methodology was also demonstrated in the gram scale level.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures
Similar articles
-
Enantioselective synthesis of isoquinoline-1,3(2H,4H)-dione derivatives via a chiral phosphoric acid catalyzed aza-Friedel-Crafts reaction.Chem Commun (Camb). 2019 Jul 16;55(58):8478-8481. doi: 10.1039/c9cc04057a. Chem Commun (Camb). 2019. PMID: 31268101
-
Highly enantioselective synthesis of 3-amino-2-oxindole derivatives: catalytic asymmetric alpha-amination of 3-substituted 2-oxindoles with a chiral scandium complex.Chemistry. 2010 Jun 11;16(22):6632-7. doi: 10.1002/chem.201000126. Chemistry. 2010. PMID: 20408167
-
Phosphine-catalyzed intramolecular Rauhut-Currier reaction: enantioselective synthesis of hydro-2H-indole derivatives.Org Biomol Chem. 2017 Aug 30;15(34):7097-7101. doi: 10.1039/c7ob01820g. Org Biomol Chem. 2017. PMID: 28816332
-
Recent developments in the synthesis of the isoquinoline-1,3(2H,4H)-dione by radical cascade reaction.Org Biomol Chem. 2022 Oct 19;20(40):7861-7885. doi: 10.1039/d2ob01554d. Org Biomol Chem. 2022. PMID: 36185038 Review.
-
Application of cyclohexane-1,3-diones for six-membered oxygen-containing heterocycles synthesis.Bioorg Chem. 2021 Feb;107:104559. doi: 10.1016/j.bioorg.2020.104559. Epub 2020 Dec 15. Bioorg Chem. 2021. PMID: 33418315 Review.
References
-
- Kankanala J. Marchand C. Abdelmalak M. Aihara H. Pommier Y. Wang Z. J. Med. Chem. 2016;59:2734–2746. doi: 10.1021/acs.jmedchem.5b01973. - DOI - PMC - PubMed
- Vernekar S. K. V. Liu Z. Nagy E. Miller L. Kirby K. A. Wilson D. J. Kankanala J. Sarafianos S. T. Parniak M. A. Wang Z. J. Med. Chem. 2015;58:651–664. doi: 10.1021/jm501132s. - DOI - PMC - PubMed
- Chen Y.-L. Tang J. Kesler M. J. Sham Y. Y. Vince R. Geraghty R. J. Wang Z. Bioorg. Med. Chem. 2012;20:467–479. doi: 10.1016/j.bmc.2011.10.058. - DOI - PubMed
-
- Li Z.-Z. Yu J. Wang L.-N. Chen S.-L. Sheng R.-L. Tang S. Tetrahedron. 2018;74:6558–6568. doi: 10.1016/j.tet.2018.09.036. - DOI
- Xia X.-F. Zhu S.-L. Wang D. Liang Y.-M. Adv. Synth. Catal. 2017;359:859–865. doi: 10.1002/adsc.201600982. - DOI
- Lu M. Liu Z. Zhang J. Tian Y. Qin H. Huang M. Hu S. Cai S. Org. Biomol. Chem. 2018;16:6564–6568. doi: 10.1039/C8OB01922C. - DOI - PubMed
- Zhang T. Guo X. Shi Y. He C. Duan C. Nat. Commun. 2018;9:4024. doi: 10.1038/s41467-018-05919-6. - DOI - PMC - PubMed
- Li X. Zhuang S. Fang X. Liu P. Sun P. Org. Biomol. Chem. 2017;15:1821–1827. doi: 10.1039/C6OB02797K. - DOI - PubMed
- Huang S. Niu P. Su Y. Hu D. Huo C. Org. Biomol. Chem. 2018;16:7748–7752. doi: 10.1039/C8OB01964A. - DOI - PubMed
- Yuan Y.-O. Kumar P. S. Zhang C.-N. Yang M.-H. Guo S.-R. Org. Biomol. Chem. 2017;15:7330–7338. doi: 10.1039/C7OB01552F. - DOI - PubMed
LinkOut - more resources
Full Text Sources