ZnO nanostructured materials for emerging solar cell applications
- PMID: 35514924
- PMCID: PMC9058181
- DOI: 10.1039/d0ra07689a
ZnO nanostructured materials for emerging solar cell applications
Abstract
Zinc oxide (ZnO) has been considered as one of the potential materials in solar cell applications, owing to its relatively high conductivity, electron mobility, stability against photo-corrosion and availability at low-cost. Different structures of ZnO materials have been engineered at the nanoscale, and then applied on the conducting substrate as a photoanode. On the other hand, the ZnO nanomaterials directly grown on the substrate have been attractive due to their unique electron pathways, which suppress the influence of surface states typically found in the former case. Herein, we review the recent progress of ZnO nanostructured materials in emerging solar cell applications, such as sensitized and heterojunction architectures, including those embedded with promising perovskite materials. The remarkable advancement in each solar cell architecture is highlighted towards achieving high power conversion efficiency and operational stability. We also discuss the foremost bottleneck for further improvements and the future outlook for large-scale practical applications.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures
Similar articles
-
Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation.ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38467-38476. doi: 10.1021/acsami.7b10994. Epub 2017 Oct 30. ACS Appl Mater Interfaces. 2017. PMID: 29027464
-
Recent progress in ZnO-based nanostructured ceramics in solar cell applications.J Nanosci Nanotechnol. 2012 Nov;12(11):8215-30. doi: 10.1166/jnn.2012.6680. J Nanosci Nanotechnol. 2012. PMID: 23421200 Review.
-
Selected organic dyes (carminic acid, pyrocatechol violet and dithizone) sensitized metal (silver, neodymium) doped TiO2/ZnO nanostructured materials: A photoanode for hybrid bulk heterojunction solar cells.Spectrochim Acta A Mol Biomol Spectrosc. 2022 Oct 5;278:121387. doi: 10.1016/j.saa.2022.121387. Epub 2022 May 14. Spectrochim Acta A Mol Biomol Spectrosc. 2022. PMID: 35597162
-
Perovskite Solar Cells with ZnO Electron-Transporting Materials.Adv Mater. 2018 Jan;30(3). doi: 10.1002/adma.201703737. Epub 2017 Nov 6. Adv Mater. 2018. PMID: 29105851 Review.
-
Improved dye-sensitized solar cell with a ZnO nanotree photoanode by hydrothermal method.Nanoscale Res Lett. 2014 May 2;9(1):206. doi: 10.1186/1556-276X-9-206. eCollection 2014. Nanoscale Res Lett. 2014. PMID: 24872799 Free PMC article.
Cited by
-
Temperature Control of Yellow Photoluminescence from SiO2-Coated ZnO Nanocrystals.Nanomaterials (Basel). 2022 Sep 27;12(19):3368. doi: 10.3390/nano12193368. Nanomaterials (Basel). 2022. PMID: 36234495 Free PMC article.
-
Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials.Gels. 2021 Dec 18;7(4):275. doi: 10.3390/gels7040275. Gels. 2021. PMID: 34940335 Free PMC article. Review.
-
Enhanced Optical Management in Organic Solar Cells by Virtue of Square-Lattice Triple Core-Shell Nanostructures.Micromachines (Basel). 2023 Aug 9;14(8):1574. doi: 10.3390/mi14081574. Micromachines (Basel). 2023. PMID: 37630110 Free PMC article.
-
Photogalvanics of copper and brass working electrodes in the NaOH-Allura Red-d-galactose-DDAC electrolyte for solar power generation.RSC Adv. 2024 May 3;14(21):14648-14664. doi: 10.1039/d4ra01091d. eCollection 2024 May 2. RSC Adv. 2024. PMID: 38708122 Free PMC article.
-
Control of ZnO nanowires growth in flexible perovskite solar cells: A mini-review.Heliyon. 2024 Jan 26;10(3):e24706. doi: 10.1016/j.heliyon.2024.e24706. eCollection 2024 Feb 15. Heliyon. 2024. PMID: 38322830 Free PMC article. Review.
References
-
- Senger R. Bajaj K. Phys. Rev. B: Condens. Matter. 2003;68:045313. doi: 10.1103/PhysRevB.68.045313. - DOI
-
- Look D. C. Reynolds D. C. Sizelove J. Jones R. Litton C. W. Cantwell G. Harsch W. Solid State Commun. 1998;105:399–401. doi: 10.1016/S0038-1098(97)10145-4. - DOI
-
- Albrecht J. Ruden P. Limpijumnong S. Lambrecht W. Brennan K. J. Appl. Phys. 1999;86:6864–6867. doi: 10.1063/1.371764. - DOI
-
- Park W. I. Kim J. S. Yi G.-C. Bae M. Lee H.-J. Appl. Phys. Lett. 2004;85:5052–5054. doi: 10.1063/1.1821648. - DOI
Publication types
LinkOut - more resources
Full Text Sources