Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 21;10(33):19454-19462.
doi: 10.1039/d0ra01519a. eCollection 2020 May 20.

Oxidative radical coupling of hydroquinones and thiols using chromic acid: one-pot synthesis of quinonyl alkyl/aryl thioethers

Affiliations

Oxidative radical coupling of hydroquinones and thiols using chromic acid: one-pot synthesis of quinonyl alkyl/aryl thioethers

T P Adarsh Krishna et al. RSC Adv. .

Abstract

An efficient, simple and practical protocol for one-pot sequential oxidative radical C-H/S-H cross-coupling of thiols with hydroquinones (HQs) and oxidation leading to the formation of quinonyl alkyl/aryl thioethers using H2CrO4 was developed. This cross-coupling of thiyl and aryl radicals offers mono thioethers in good to moderate yield and works well with a wide variety of thiols. Similarly, this method works well for coupling of 2-amino thiophenol and HQs to form phenothiazine-3-ones 5a-c. C-S bond formation via thioether synthesis was observed using a chromium reagent for the first time. Theoretical studies on the pharmacokinetic properties of compounds 5a-c revealed that due to drug-like properties, compound 5b strongly binds with Alzheimer's disease (AD) associated AChE target sites.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1. Bioactive molecules containing a thioether linkage.
Scheme 1
Scheme 1. Quinonyl thioethers from thiol and hydroquinone.
Scheme 2
Scheme 2. Scope of C–H/S–H cross-coupling between HQ and thiols.a,b aReaction conditions: hydroquinone (1.0 equiv., 100 mg), thiol (1.5 equiv.), CrO3 (3.0 equiv.), DCM : H2O (4 mL, 1 : 1) at rt, bisolated yield; cexpected product.
Scheme 3
Scheme 3. One-pot C–H difunctionalization of HQ.
Scheme 4
Scheme 4. Synthesis of Hep3B inhibitor.
Scheme 5
Scheme 5. Domino reaction for phenothiazine-3-one. Reaction conditions: hydroquinone (1.0 equiv., 100 mg), 2-aminothiolphenol (1.5 equiv.), CrO3 (3.0 equiv.), DCM : H2O (4 mL, 1 : 1) at rt, isolated yield.
Fig. 2
Fig. 2. (A) Acetylcholinesterase target; (B) 3D structure of protein–ligand interaction; (C) 2D structure of protein–ligand interaction.
Scheme 6
Scheme 6. Conversion of HQ to BQ.
Scheme 7
Scheme 7. Verification experiments for the mechanism.
Scheme 8
Scheme 8. A Plausible mechanism.

Similar articles

Cited by

References

    1. Kraus G. A. Mengwasser J. Molecules. 2009;14:2857–2861. doi: 10.3390/molecules14082857. - DOI - PMC - PubMed
    2. Wendlandt A. E. Stahl S. S. Angew. Chem., Int. Ed. 2015;54:14638–14658. doi: 10.1002/anie.201505017. - DOI - PMC - PubMed
    3. Hosamani B. Ribeiro M. F. da Silva Junior E. N. Namboothiri I. N. N. Org. Biomol. Chem. 2016;14:6913–6931. doi: 10.1039/C6OB01119E. - DOI - PubMed
    4. Song C. Dong X. Yi H. Chiang C. W. Lei A. ACS Catal. 2018;8:2195–2199. doi: 10.1021/acscatal.7b04434. - DOI
    1. Dandawate P. R. Vyas A. C. Padhye S. B. Singh M. W. Baruah J. B. Mini-Rev. Med. Chem. 2010;10:436–454. doi: 10.2174/138955710791330909. - DOI - PubMed
    2. Hadden M. K. Hill S. A. Davenport J. Matts R. L. Blagg B. S. J. Bioorg. Med. Chem. 2009;17:634–640. doi: 10.1016/j.bmc.2008.11.064. - DOI - PMC - PubMed
    1. Madeo J. Zubair A. Marianne F. SpringerPlus. 2013;2(139):1–8. - PMC - PubMed
    2. Park S. Yun E. Hwanf I. H. Yoon S. Kim D. E. Na M. Song G. Y. Oh S. Mar. Drugs. 2014;12:3231–3244. doi: 10.3390/md12063231. - DOI - PMC - PubMed
    3. Arai M. Kawachi T. Sato H. Setiawan A. Kobayashi M. Bioorg. Med. Chem. Lett. 2014;24:3155–3157. doi: 10.1016/j.bmcl.2014.04.116. - DOI - PubMed
    4. Bolton J. L. Dunlap T. Chem. Res. Toxicol. 2017;30:13–37. - PMC - PubMed
    5. Garcia P. A. Hernández A. P. Feliciano A. S. Castro M. A. Mar. Drugs. 2018;16(292):1–51. - PubMed
    1. Litchfield V. J. Smith R. B. Franklin A. M. Davis J. Synth. Commun. 2008;38:3447–3455. doi: 10.1080/00397910802154261. - DOI
    2. Er S. Suh C. Marshaka M. P. Guzik A. A. Chem. Sci. 2015;6:885–893. doi: 10.1039/C4SC03030C. - DOI - PMC - PubMed
    3. Son E. J. Kim J. H. Kim K. Park C. B. J. Mater. Chem. A. 2016;4:11179–11202. doi: 10.1039/C6TA03123D. - DOI
    4. Ding Y. Li Y. Yu G. Chem. 2016;1:790–801. doi: 10.1016/j.chempr.2016.09.004. - DOI
    5. Taran O. Front. Chem. 2017;5(49):1–13. - PMC - PubMed
    1. Sladic D. Gasic M. J. Molecules. 2006;11(1):1–33. doi: 10.3390/11010001. - DOI - PMC - PubMed
    2. Najjar N. E. Muhtasib H. G. Ketola R. A. Vuorela P. Urtti A. Vuorela H. Phytochem. Rev. 2011;10:353–370. doi: 10.1007/s11101-011-9209-1. - DOI
    3. Guin P. S. Das S. Mandal P. C. Int. J. Electrochem. 2011;816202:1–22.