Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 4;9(36):21025-21030.
doi: 10.1039/c9ra03841h. eCollection 2019 Jul 1.

New molecular architectures containing low-valent cluster centres with di- and trimetalated 2-vinylpyrazine ligands: synthesis and molecular structures of Ru5(CO)155-C4H2N2CH[double bond, length as m-dash]CH)(μ-H)2 and Ru8(CO)247-C4H2N2CH[double bond, length as m-dash]C)(μ-H)3

Affiliations

New molecular architectures containing low-valent cluster centres with di- and trimetalated 2-vinylpyrazine ligands: synthesis and molecular structures of Ru5(CO)155-C4H2N2CH[double bond, length as m-dash]CH)(μ-H)2 and Ru8(CO)247-C4H2N2CH[double bond, length as m-dash]C)(μ-H)3

Md Monir Hossain et al. RSC Adv. .

Abstract

Reaction of 2-vinylpyrazine with Ru3(CO)12 results in multiple C-H bond activations to afford penta- and octa-ruthenium clusters, Ru5(CO)155-C4H2N2CH[double bond, length as m-dash]CH)(μ-H)2 (2) and Ru8(CO)247-C4H2N2CH[double bond, length as m-dash]C)(μ-H)3 (3), in which a Ru3 sub-unit is linked to Ru2 and Ru5 centres via di- and tri-metalated 2-vinylpyrazine ligands, exhibiting novel coordination modes including the loss of ring aromaticity in 2. The bonding of 2 and the mechanism for the fluxional behaviour of the hydrides have been examined by electronic structure calculations.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Chart 1
Chart 1. Binding modes of 2-vinylpyrazine (X = N) and 2-vinylpyridine (X = CH) at polynuclear cluster centers.
Scheme 1
Scheme 1. Reaction of Ru3(CO)10(μ-dppm) with 2-vinylpyrazine.
Fig. 1
Fig. 1. Molecular structure of Ru3(CO)63-C4H3N2CHC)(μ-dppm)(μ-H)2 (1), showing 50% probability thermal ellipsoids without hydrogen atoms except the bridging hydrides (left) and the cluster core without the dppm, carbonyls and hydrogen atoms (right). Selected bond lengths (Å) and angles (°): Ru(1)–Ru(2) 2.8765(6), Ru(2)–Ru(3) 2.8264(6), Ru(1)–Ru(3) 2.7952(6), Ru(1)–P(1) 2.3273(14), Ru(3)–P(2) 2.2730(14), Ru(2)–N(1) 2.145(4), Ru(1)–C(8) 2.322(5), Ru(1)–C(7) 2.160(5), Ru(2)–C(7) 2.054(5), Ru(3)–C(7) 1.990(5), N(1)–Ru(2)–Ru(1) 83.14(11), N(1)–Ru(2)–Ru(3) 124.02(11), C(7)–Ru(1)–C(8) 36.11(19), C(7)–Ru(1)–Ru(3) 45.12(14), C(7)–Ru(3)–Ru(1) 50.28(15), Ru(1)–C(7)–Ru(3) 84.60(18).
Scheme 2
Scheme 2. Reaction of Ru3(CO)12 with 2-vinylpyrazine.
Fig. 2
Fig. 2. Molecular structure of Ru5(CO)155-C4H2N2CHCH)(μ-H)2 (2, top), showing 50% probability thermal ellipsoids without hydrogen atoms except the bridging hydrides and the cluster core without carbonyls and hydrogen atoms (bottom). Selected bond lengths (Å) and angles (°): Ru(1)–Ru(2) 2.7905(2), Ru(2)–Ru(3) 2.7742(2), Ru(1)–Ru(3) 2.9263(2), Ru(4)–Ru(5) 2.7409(2), Ru(4)–N(1) 2.1138(13), Ru(3)–N(2) 2.0850(13), Ru(1)–C(20) 2.1549(15), Ru(2)–C(20) 2.1349(15), Ru(5)–C(16) 2.2373(16), Ru(5)–C(17) 2.1858(16), Ru(5)–C(18) 2.2183(15), C(18)–N(1) 1.4425(19), C(18)–C(19) 1.448(2), C(19)–N(2) 1.284(2), C(20)–N(2) 1.4454(19), C(20)–C(21) 1.453(2), C(21)–N(1) 1.2911(19), C(16)–C(17) 1.393(2), C(17)–C(18) 1.454(2), N(2)–Ru(3)–Ru(1) 70.07(3), N(1)–Ru(4)–Ru(5) 72.10(3), Ru(1)–C(20)–Ru(2) 81.15(5).
Fig. 3
Fig. 3. Optimized structures for the isomeric hydrides based on cluster 2 (top) and potential energy profile for hydride scrambling between species A and C (bottom). Energy values (ΔG) are in kcal mol−1 with respect to A.
Fig. 4
Fig. 4. Molecular structure of Ru8(CO)247-C4H2N2CHC)(μ-H)3 (3, top), showing (a) 50% probability thermal ellipsoids without hydrogen atoms except the bridging hydrides and the cluster core without carbonyls and hydrogen atoms (bottom). Selected bond lengths (Å) and angles (°): Ru(1)–Ru(2) 2.8493(7), Ru(2)–Ru(3) 2.8585(7), Ru(1)–Ru(3) 2.8723(8), Ru(4)–Ru(5) 2.8635(7), Ru(4)–Ru(6) 2.8269(7), Ru(4)–Ru(8) 2.9769(7), Ru(5)–Ru(7) 2.8536(7), Ru(5)–Ru(8) 2.7752(7), Ru(6)–Ru(7) 2.8319(7), Ru(7)–Ru(8) 3.0470(7), Ru(2)–N(1) 2.107(4), Ru(4)–N(2) 2.102(4), Ru(3)–C(28) 2.097(5), Ru(4)–C(25) 2.114(5), Ru(5)–C(25) 2.109(5), Ru(6)–C(25) 2.107(5), Ru(7)–C(25) 2.148(5), Ru(6)–C(26) 2.201(5), C(28)–N(1) 1.336(7), C(28)–C(27) 1.429(7), C(27)–N(2) 1.351(7), C(29)–N(2) 1.349(7), C(29)–C(30) 1.368(8), C(30)–N(1) 1.340(7), C(25)–C(26) 1.447(7), C(26)–C(27) 1.450(8), Ru(5)–Ru(4)–Ru(6) 92.857(19), Ru(6)–Ru(4)–Ru(8) 91.39(2), Ru(4)–Ru(5)–Ru(7) 81.786(18), Ru(4)–Ru(6)–Ru(7) 82.815(18), Ru(5)–Ru(7)–Ru(6) 92.961(19), Ru(6)–Ru(7)–Ru(8) 89.86(2), Ru(4)–Ru(8)–Ru(7) 76.815(18).
Scheme 3
Scheme 3. Hydride scrambling between species A and C through intermediate B.
Scheme 4
Scheme 4. Proposed scheme for the formation of 1–3.

Similar articles

Cited by

References

    1. Oi S. Sakai K. Inoue Y. Org. Lett. 2005;7:4009–4011. doi: 10.1021/ol051654l. - DOI - PubMed
    1. Dyker G. Angew. Chem., Int. Ed. 1999;38:1698–1712. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1698::AID-ANIE1698>3.0.CO;2-6. - DOI - PubMed
    2. Kakiuchi F. Murai S. Acc. Chem. Res. 2002;35:826–834. doi: 10.1021/ar960318p. - DOI - PubMed
    1. Oi S. Tanaka Y. Inoue Y. Organometallics. 2006;25:4773–4778. doi: 10.1021/om060561k. - DOI
    1. Wong-Foy A. G. Henling L. M. Day M. Labinger J. A. Bercaw J. E. J. Mol. Catal. A: Chem. 2002;189:3–16. doi: 10.1016/S1381-1169(02)00193-0. - DOI
    1. Navarro J. Sola E. Martín M. Dobrinovitch I. T. Lahoz F. J. Oro L. A. Organometallics. 2004;23:1908–1917. doi: 10.1021/om049953m. - DOI