Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep 25;10(58):35433-35448.
doi: 10.1039/d0ra06651f. eCollection 2020 Sep 21.

Aldehyde catalysis - from simple aldehydes to artificial enzymes

Affiliations
Review

Aldehyde catalysis - from simple aldehydes to artificial enzymes

Zeqin Yuan et al. RSC Adv. .

Abstract

Chemists have been learning and mimicking enzymatic catalysis in various aspects of organic synthesis. One of the major goals is to develop versatile catalysts that inherit the high catalytic efficiency of enzymatic processes, while being effective for a broad scope of substrates. In this field, the study of aldehyde catalysts has achieved significant progress. This review summarizes the application of aldehydes as sustainable and effective catalysts in different reactions. The fields, in which the aldehydes successfully mimic enzymatic systems, include light energy absorption/transfer, intramolecularity introduction through tether formation, metal binding for activation/orientation and substrate activation via aldimine formation. Enantioselective aldehyde catalysis has been achieved with the development of chiral aldehyde catalysts. Direct simplification of aldehyde-dependent enzymes has also been investigated for the synthesis of noncanonical chiral amino acids. Further development in aldehyde catalysis is expected, which might also promote exploration in fields related to prebiotic chemistry, early enzyme evolution, etc.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Representative examples of enzymatic mimicking of aldehyde catalysts (left); simple classification of the aldehyde catalysts (right).
Scheme 1
Scheme 1. 1-Naphthaldehyde catalyzed isomerization of cis-piperylene.
Scheme 2
Scheme 2. p-Anisaldehyde catalyzed ATRA of alkyl halides to olefins.
Scheme 3
Scheme 3. CDC of electron deficient heteroarenes with amides enhanced by benzaldehyde.
Scheme 4
Scheme 4. Mechanism of the benzaldehyde enhanced CDC.
Scheme 5
Scheme 5. Combination of benzaldehyde and Ni catalysis in the coupling reaction of ethers/amides/thioethers and bromides.
Scheme 6
Scheme 6. p-Cyanobenzaldehyde catalyzed hydroacylation of electron-withdrawing alkenes.
Scheme 7
Scheme 7. p-Anisaldehyde catalyzed sulfonylcynation of chiral cyclobutenes.
Scheme 8
Scheme 8. Diphenylacetaldehyde catalyzed ATRA of perfluoroalkyl iodides with alkenes/alkynes.
Scheme 9
Scheme 9. Mechanism of diphenylacetaldehyde-amine catalysis in ATRA of perfluoroalkyl iodides with alkenes/alkynes.
Scheme 10
Scheme 10. Salicylaldehyde/base catalyzed decarboxylative alkylations.
Scheme 11
Scheme 11. Potassium 2-formylphenolate (cat. 7) catalyzed aerobic oxidation of N-alkylpyridinium salts.
Scheme 12
Scheme 12. Simple aldehydes promoted dehydration of amides.
Scheme 13
Scheme 13. Simple aldehydes catalyzed dehydrative transformation between the corresponding alcohols and primary amines/amides.
Scheme 14
Scheme 14. Simple aldehydes catalyzed dehydrative transformation between the corresponding alcohols and 2-substituted alcohols.
Scheme 15
Scheme 15. Simple aldehydes catalyzed dehydrative transformation between the corresponding alcohols and fluorenes.
Scheme 16
Scheme 16. Mechanisms of hydrolysis/hydrations/hydroaminations applying temporary tether strategy.
Scheme 17
Scheme 17. Hydrolysis of 48 and hydration of 50 catalyzed by simple aldehydes or sugars.
Scheme 18
Scheme 18. o-Phthalaldehyde catalyzed hydrolysis of phosphinic amides.
Scheme 19
Scheme 19. Aldehyde catalyzed hydroaminations.
Scheme 20
Scheme 20. Mechanism of metal catalysis applying aldehydes as transient directing groups.
Scheme 21
Scheme 21. Metal mediated C–H functionalization using catalytic amount of aldehydes as transient directing groups.
Scheme 22
Scheme 22. Metal mediated C–H functionalization using stoichiometric amount of aldehydes as transient directing groups.
Scheme 23
Scheme 23. Metal mediated C–H functionalization using 2-hydroxybenzaldehyde cat. 19 and pyridin-2-ol as transient directing groups.
Scheme 24
Scheme 24. Metal mediated C–H amination of benzoxazoles cooperated with aldehyde cat. 21.
Fig. 2
Fig. 2. Structure of pyridoxal phosphate (PLP).
Scheme 25
Scheme 25. Brief summary of the catalytic routes of PLP-dependent enzymes.
Scheme 26
Scheme 26. Photoswitchable catalyst promoted racemization of l-alanine.
Scheme 27
Scheme 27. Non-enzymatic catalyzed transamination using PLP derivatives.
Scheme 28
Scheme 28. Asymmetric transamination catalyzed by PL/PM derived chiral catalysts.
Scheme 29
Scheme 29. Asymmetric Mannich reaction catalyzed by PL derived chiral catalyst.
Scheme 30
Scheme 30. Asymmetric nucleophilic substitution catalyzed by binaphthyl derived catalyst.
Scheme 31
Scheme 31. Asymmetric Michael addition/cyclization sequence catalyzed by binaphthyl derived catalyst.
Scheme 32
Scheme 32. Engineered TrpB catalyzed elimination/Micheal addition sequence.
Scheme 33
Scheme 33. Direct evoluted TrpB Pfquat catalyzed elimination/Micheal addition sequence.
Scheme 34
Scheme 34. Enzymatic synthesis of AMA and its analogues.
None
Zeqin Yuan
None
Jun Liao
None
Hao Jiang
None
Peng Cao
None
Yang Li

Similar articles

Cited by

References

    1. Selected reviews:

    2. Dalko P. I. Moisan L. Angew. Chem., Int. Ed. 2001;40:3726. doi: 10.1002/1521-3773(20011015)40:20<3726::AID-ANIE3726>3.0.CO;2-D. - DOI - PubMed
    3. Dalko P. I. Moisan L. Angew. Chem., Int. Ed. 2004;43:5138. doi: 10.1002/anie.200400650. - DOI - PubMed
    4. Seayad J. List B. Org. Biomol. Chem. 2005;3:719. doi: 10.1039/B415217B. - DOI - PubMed
    5. Pellissier H. Tetrahedron. 2007;63:9267. doi: 10.1016/j.tet.2007.06.024. - DOI
    6. Dondoni A. Massi A. Angew. Chem., Int. Ed. 2008;47:4638. doi: 10.1002/anie.200704684. - DOI - PubMed
    7. Gaunt M. J. Johansson C. C. C. McNally A. Vo N. T. Drug Discovery Today. 2007;12:8. doi: 10.1016/j.drudis.2006.11.004. - DOI - PubMed
    8. Bertelsen S. Jørgensen K. A. Chem. Soc. Rev. 2009;38:2178. doi: 10.1039/B903816G. - DOI - PubMed
    9. Buckley B. R. Farah M. M. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2011;107:102. doi: 10.1039/C1OC90020J. - DOI
    10. Buckley B. R. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2013;109:189. doi: 10.1039/C3OC90015K. - DOI
    11. Oliveira V. d. G. Cardoso M. F. d. C. Forezi L. d. S. M. Catalysts. 2018;8:605. doi: 10.3390/catal8120605. - DOI
    12. Sideri I. K. Voutyritsa E. Kokotos C. G. Org. Biomol. Chem. 2018;16:4596. doi: 10.1039/C8OB00725J. - DOI - PubMed
    13. van der Helm M. P. Klemm B. Eelkema R. Nat. Rev. Chem. 2019;3:491. doi: 10.1038/s41570-019-0116-0. - DOI
    14. Reyes-Rodríguez G. J. Rezayee N. M. Vidal-Albalat A. Jørgensen K. A. Chem. Rev. 2019;119:4221. doi: 10.1021/acs.chemrev.8b00583. - DOI - PubMed
    1. Recent reviews:

    2. Pascal R. Eur. J. Org. Chem. 2003;2003:1813. doi: 10.1002/ejoc.200200530. - DOI
    3. Li B.-J. El-Nachef C. Beauchemin A. M. Chem. Commun. 2017;53:13192. doi: 10.1039/C7CC07352F. - DOI - PubMed
    4. Li S. Chen X.-Y. Enders D. Chem. 2018;4:2026. doi: 10.1016/j.chempr.2018.08.011. - DOI
    5. Gong L.-Z. Sci. China: Chem. 2019;62:3. doi: 10.1007/s11426-018-9345-5. - DOI
    6. Shimoda Y. J. Synth. Org. Chem., Jpn. 2019;77:369. doi: 10.5059/yukigoseikyokaishi.77.369. - DOI
    7. Wang Q. Gu Q. You S.-L. Angew. Chem., Int. Ed. 2019;58:6818. doi: 10.1002/anie.201808700. - DOI - PubMed
    8. Chen J. Liu Y. E. Dong X. Shi L. Zhao B. Chin. J. Chem. 2019;37:103.
    9. Theodoropoulou M. A. Nikitas N. F. Kokotos C. G. Beilstein J. Org. Chem. 2020;16:833. doi: 10.3762/bjoc.16.76. - DOI - PMC - PubMed
    1. Recent examples and reviews:

    2. Kofoed J. Reymod J.-L. Darbre T. Org. Biomol. Chem. 2005;3:1850. doi: 10.1039/B501512J. - DOI - PubMed
    3. Koch K. Schweizer W. B. Eschenmoser A. Chem. Biodiversity. 2007;4:541. doi: 10.1002/cbdv.200790049. - DOI - PubMed
    4. Amedjkouh M. Brandberg M. Chem. Commun. 2008;2008:3043. doi: 10.1039/B804142N. - DOI - PubMed
    5. Cleaves II H. J. Precambrian Res. 2008;164:111. doi: 10.1016/j.precamres.2008.04.002. - DOI
    6. Benner S. A. Kim H.-J. Kim M.-J. Ricardo A. Cold Spring Harbor Perspect. Biol. 2010;2:a003467. - PMC - PubMed
    7. Kajjout M. Hebting Y. Albrecht P. Adam P. Chem. Biodiversity. 2012;9:714. doi: 10.1002/cbdv.201100124. - DOI - PubMed
    8. Meinert C. Myrgorodska I. de Marcellus P. Buhse T. Nahon L. Hoffmann S. V. d'Hendecourt L. L. S. Meierhenrich U. J. Sicence. 2016;352:208. doi: 10.1126/science.aad8137. - DOI - PubMed
    9. López-Islas A. Colín-García M. Negrón-Mendoza A. Int. J. Astrobiol. 2019;18:420. doi: 10.1017/S1473550418000368. - DOI
    10. Eckhardt A. K. Bergantini A. Singh S. K. Schreiner P. R. Kaiser R. I. Angew. Chem., Int. Ed. 2019;58:5663. doi: 10.1002/anie.201901059. - DOI - PubMed
    11. Bernhardt H. S. Life. 2019;9:19. doi: 10.3390/life9010019. - DOI - PMC - PubMed
    1. For a review:

    2. Chew A. G. M. Bryant D. A. Annu. Rev. Microbiol. 2007;61:113. doi: 10.1146/annurev.micro.61.080706.093242. - DOI - PubMed
    1. For recent reviews:

    2. Reckenthäler M. Griesbeck A. G. Adv. Synth. Catal. 2013;355:2727. doi: 10.1002/adsc.201300751. - DOI
    3. Xuan J. Lu L.-Q. Chen J.-R. Xiao W.-J. Eur. J. Org. Chem. 2013;2013:6755. doi: 10.1002/ejoc.201300596. - DOI
    4. Koike T. Akita M. Top. Organomet. Chem. 2014;48:371. doi: 10.1007/3418_2014_80. - DOI
    5. Wang C. Lu Z. Org. Chem. Front. 2015;2:179. doi: 10.1039/C4QO00306C. - DOI
    6. Aukauloo A. and Leibl W., Chapter Three - Bioinspired Photocatalysis, Advances in Botanical Research, ed. B. Robert, Academic Press, 2016, vol. 79, p. 63
    7. Kokotos C. G. Org. Biomol. Chem. 2018;16:4596. doi: 10.1039/C8OB00725J. - DOI - PubMed
    8. Zeitler K., Metal-free Photo (redox) Catalysis, Visible Light Photocatalysis in Organic Chemistry, ed. C. R. J. Stephenson, T. P. Yoon and D. W. C. MacMillan, Wiley-VCH, Weinheim, 2018
    9. Zhou Q.-Q. Zou Y.-Q. Lu L.-Q. Xiao W.-J. Angew. Chem., Int. Ed. 2019;58:1586. doi: 10.1002/anie.201803102. - DOI - PubMed