Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 25;9(22):12567-12571.
doi: 10.1039/c9ra02144b. eCollection 2019 Apr 17.

Synthesis of poly-functionalized benzofurans via one-pot domino oxidation/[3+2] cyclization reactions of a hydroquinone ester and ynamides

Affiliations

Synthesis of poly-functionalized benzofurans via one-pot domino oxidation/[3+2] cyclization reactions of a hydroquinone ester and ynamides

Dongxin Zhang et al. RSC Adv. .

Abstract

Densely substituted amino-functionalized benzofurans were concisely accessed via the first one-pot domino oxidation/[3+2] cyclization of a hydroquinone ester and easily accessible ynamides under mild conditions in a short time. The complex benzofurans were able to be efficiently synthesized all from simple and inexpensive starting materials in two steps.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Direct accesses to benzofuran derivatives under oxidative conditions.
Scheme 2
Scheme 2. Substrate scope of the one-pot domino oxidation/[3+2] cyclization reaction. Reaction conditions: hydroquinone ester 5 (0.12 mmol), Ag2O (0.24 mmol), and MgSO4 (0.24 mmol) were mixed in CH2Cl2 (2.0 mL) and the mixture was stirred for 2 h, and then 1 (0.10 mmol) and Sc(OTf)3 (0.002 mmol) were added.
Scheme 3
Scheme 3. (a) Concise access to complex benzofurans from simple and inexpensive starting materials. (b) A large scale reaction for the synthesis of 3h.
Scheme 4
Scheme 4. Proposed mechanism for the one-pot domino oxidation/[3+2] cyclization.

Similar articles

Cited by

References

    1. For recent reviews and examples:

    2. Chand K. Rajeshwari Hiremathad A. Singh M. Santos M. A. Keri R. S. Pharmacol. Rep. 2017;69:281. doi: 10.1016/j.pharep.2016.11.007. - DOI - PubMed
    3. Soleimani A. Asadi J. Rostami-Charati F. Gharaei R. Comb. Chem. High Throughput Screening. 2015;18:505. doi: 10.2174/1386207318666150430114815. - DOI - PubMed
    4. Radadiya A. Shah A. Eur. J. Med. Chem. 2015;97:356. doi: 10.1016/j.ejmech.2015.01.021. - DOI - PubMed
    5. Naik R. Harmalkar D. S. Xu X. Jang K. Lee K. Eur. J. Med. Chem. 2015;90:379. doi: 10.1016/j.ejmech.2014.11.047. - DOI - PubMed
    6. Khanam H. Shamsuzzaman Eur. J. Med. Chem. 2015;97:483. doi: 10.1016/j.ejmech.2014.11.039. - DOI - PubMed
    7. Mostofi M. Mohammadi Ziarani G. Lashgari N. Bioorg. Med. Chem. 2018;26:3076. doi: 10.1016/j.bmc.2018.02.049. - DOI - PubMed
    8. Lu B. Huang S. Cao J. Hu Q. Shen R. Wan H. Wang D. Yuan J. Zhang L. Zhang J. Zhang M. Tao W. Zhang L. Bioorg. Med. Chem. 2018;26:581. doi: 10.1016/j.bmc.2017.12.019. - DOI - PubMed
    9. Kushwaha P. Tripathi A. K. Gupta S. Kothari P. Upadhyay A. Ahmad N. Sharma T. Siddiqi M. I. Trivedi R. Sashidhara K. V. Eur. J. Med. Chem. 2018;156:103. doi: 10.1016/j.ejmech.2018.06.062. - DOI - PubMed
    10. Thevenin M. Thoret S. Grellier P. Dubois J. Bioorg. Med. Chem. 2013;21:4885. doi: 10.1016/j.bmc.2013.07.002. - DOI - PubMed
    11. La Clair J. J. Rheingold A. L. Burkart M. D. J. Nat. Prod. 2011;74:2045. doi: 10.1021/np200361y. - DOI - PubMed
    12. Sakurai J. Oguchi T. Watanabe K. Abe H. Kanno S. Ishikawa M. Katoh T. Chem.–Eur. J. 2008;14:829. doi: 10.1002/chem.200701386. - DOI - PubMed
    13. Romagnoli R. Baraldi P. G. Carrion M. D. Cara C. L. Cruz-Lopez O. Tolomeo M. Grimaudo S. Di Cristina A. Pipitone M. R. Balzarini J. Zonta N. Brancale A. Hamel E. Bioorg. Med. Chem. 2009;17:6862–6871. doi: 10.1016/j.bmc.2009.08.027. - DOI - PMC - PubMed
    1. For representative reviews and examples:

    2. Patil N. T. Yamamoto Y. Chem. Rev. 2008;108:3395. doi: 10.1021/cr050041j. - DOI - PubMed
    3. Katritzky A. R. Fali C. N. Li J. J. Org. Chem. 1997;62:8205. doi: 10.1021/jo9710846. - DOI - PubMed
    4. Nicolaou K. C. Snyder S. A. Bigot A. Pfefferkorn J. A. Angew. Chem., Int. Ed. 2000;39:1093. doi: 10.1002/(SICI)1521-3773(20000317)39:6<1093::AID-ANIE1093>3.0.CO;2-S. - DOI - PubMed
    5. Rueping M. Leiendecker M. Das A. Poisson T. Bui L. Chem. Commun. 2011;47:10629. doi: 10.1039/C1CC14297F. - DOI - PubMed
    6. Willis M. C. Taylor D. Gillmore A. T. Org. Lett. 2004;6:4755. doi: 10.1021/ol047993g. - DOI - PubMed
    7. Zhang H. Ferreira E. M. Stoltz B. M. Angew. Chem., Int. Ed. 2004;43:6144. doi: 10.1002/anie.200461294. - DOI - PubMed
    8. Furstner A. Davies P. W. J. Am. Chem. Soc. 2005;127:15024. doi: 10.1021/ja055659p. - DOI - PubMed
    9. Ishikawa T. Miyahara T. Asakura M. Higuchi S. Miyauchi Y. Saito S. Org. Lett. 2005;7:1211. doi: 10.1021/ol047540b. - DOI - PubMed
    10. Anderson K. W. Ikawa T. Tundel R. E. Buchwald S. L. J. Am. Chem. Soc. 2006;128:10694. doi: 10.1021/ja0639719. - DOI - PubMed
    11. Honey M. A. Blake A. J. Campbell I. B. Judkins B. D. Moody C. J. Tetrahedron. 2009;65:8995. doi: 10.1016/j.tet.2009.07.077. - DOI
    12. Yuan F. Q. Han F. S. Adv. Synth. Catal. 2013;355:537.
    13. Hu W. Li M. Jiang G. Wu W. Jiang H. Org. Lett. 2018;20:3500. doi: 10.1021/acs.orglett.8b01277. - DOI - PubMed
    14. Shen Y. Wu X. X. Chen S. Xia Y. Liang Y. M. Chem. Commun. 2018;54:2256. doi: 10.1039/C8CC00489G. - DOI - PubMed
    15. Deng G. Li M. Yu K. Liu C. Liu Z. Duan S. Chen W. Yang X. Zhang H. Walsh P. J. Angew. Chem., Int. Ed. 2019;58:2826. doi: 10.1002/anie.201812369. - DOI - PubMed
    16. Kalvacherla B. Batthula S. Balasubramanian S. Palakodety R. K. Org. Lett. 2018;20:3824. doi: 10.1021/acs.orglett.8b01414. - DOI - PubMed
    1. Guo X. Yu R. Li H. Li Z. J. Am. Chem. Soc. 2009;131:17387. doi: 10.1021/ja907568j. - DOI - PubMed
    2. Moure M. J. SanMartin R. Dominguez E. Angew. Chem., Int. Ed. 2012;51:3220. doi: 10.1002/anie.201108513. - DOI - PubMed
    1. For selected examples:

    2. Dunetz J. R. Danheiser R. L. J. Am. Chem. Soc. 2005;127:5776. doi: 10.1021/ja051180l. - DOI - PMC - PubMed
    3. Movassaghi M. Hill M. D. Ahmad O. K. J. Am. Chem. Soc. 2007;129:10096. doi: 10.1021/ja073912a. - DOI - PubMed
    4. Yao P. Y. Zhang Y. Hsung R. P. Zhao K. Org. Lett. 2008;10:4275. doi: 10.1021/ol801711p. - DOI - PMC - PubMed
    5. Cao J. Xu Y. Kong Y. Cui Y. Hu Z. Wang G. Deng Y. Lai G. Org. Lett. 2012;14:38. doi: 10.1021/ol2027762. - DOI - PubMed
    6. Gati W. Rammah M. M. Rammah M. B. Couty F. Evano G. J. Am. Chem. Soc. 2012;134:9078. doi: 10.1021/ja303002a. - DOI - PubMed
    7. Walker P. R. Campbell C. D. Suleman A. Carr G. Anderson E. A. Angew. Chem., Int. Ed. 2013;52:9139. doi: 10.1002/anie.201304186. - DOI - PubMed
    8. Zhu L. Yu Y. Mao Z. Huang X. Org. Lett. 2015;17:30. doi: 10.1021/ol503172h. - DOI - PubMed
    9. Liu H. Yang Y. Wang S. Wu J. Wang X. N. Chang J. Org. Lett. 2015;17:4472. doi: 10.1021/acs.orglett.5b02137. - DOI - PubMed
    10. Gillie A. D. Reddy R. J. Davies P. W. Adv. Synth. Catal. 2016;358:226. doi: 10.1002/adsc.201500905. - DOI
    11. Liu H. Yang Y. Wu J. Wang X. N. Chang J. Chem. Commun. 2016;52:6801. doi: 10.1039/C6CC01565D. - DOI - PubMed
    12. Straker R. N. Peng Q. Mekareeya A. Paton R. S. Anderson E. A. Nat. Commun. 2016;7:10109. doi: 10.1038/ncomms10109. - DOI - PMC - PubMed
    13. Zhang J. Zhang Q. Xia B. Wu J. Wang X. N. Chang J. Org. Lett. 2016;18:3390. doi: 10.1021/acs.orglett.6b01546. - DOI - PubMed
    14. Xie L.-G. Niyomchon S. Mota A. J. González L. Maulide N. Nat. Commun. 2016;7:10914. doi: 10.1038/ncomms10914. - DOI - PMC - PubMed
    15. Zeng Z. Jin H. Song X. Wang Q. Rudolph M. Rominger F. Hashmi A. S. K. Chem. Commun. 2017;53:4304. doi: 10.1039/C7CC00789B. - DOI - PubMed
    16. Zeng Z. Jin H. Xie J. Tian B. Rudolph M. Rominger F. Hashmi A. S. K. Org. Lett. 2017;19:1020. doi: 10.1021/acs.orglett.7b00001. - DOI - PubMed
    17. Oh K. H. Kim J. G. Park J. K. Org. Lett. 2017;19:3994. doi: 10.1021/acs.orglett.7b01701. - DOI - PubMed
    18. Mackay W. D. Fistikci M. Carris R. M. Johnson J. S. Org. Lett. 2014;16:1626. doi: 10.1021/ol500256n. - DOI - PubMed
    19. For leading reviews:

    20. DeKorver K. A. Li H. Lohse A. G. Hayashi R. Lu Z. Zhang Y. Hsung R. P. Chem. Rev. 2010;110:5064. doi: 10.1021/cr100003s. - DOI - PMC - PubMed
    21. Evano G. Coste A. Jouvin K. Angew. Chem., Int. Ed. 2010;49:2840. doi: 10.1002/anie.200905817. - DOI - PubMed
    22. Wang X. N. Yeom H. S. Fang L. C. He S. Ma Z. X. Kedrowski B. L. Hsung R. P. Acc. Chem. Res. 2014;47:560. doi: 10.1021/ar400193g. - DOI - PMC - PubMed
    1. Jiang X. L. Liu S. J. Gu Y. Q. Mei G. J. Shi F. Adv. Synth. Catal. 2017;359:3341. doi: 10.1002/adsc.201700487. - DOI
    2. Wu B. Gao X. Yan Z. Chen M. W. Zhou Y. G. Org. Lett. 2015;17:6134. doi: 10.1021/acs.orglett.5b03148. - DOI - PubMed