Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Apr;252(4 Pt 2):H777-87.
doi: 10.1152/ajpheart.1987.252.4.H777.

Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart

Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart

J Krivokapich et al. Am J Physiol. 1987 Apr.

Abstract

The isolated arterially perfused rabbit interventricular septum was used to measure myocardial metabolic rate for glucose (MMRGlc) and rate constants and lumped constant (LC) for the glucose analogue [18F]fluorodeoxyglucose (FDG) using a tracer kinetic model. FDG was delivered by constant infusion during coincidence counting of tissue 18F radioactivity. The MMRGlc was measured by the Fick method. Control septa were paced at 72 beats/min and perfused at 1.5 ml/min with oxygenated perfusate containing 5.6 mM glucose and 5 mU/ml insulin. The following conditions were tested: 3.0 and 4.5 ml/min; insulin increased to 25 mU/ml; insulin omitted; 2.8 mM and 11.2 mM glucose; 144 beats/min and 96 paired stimuli/min; and anoxia. Under all conditions studied the phosphorylation (hexokinase) reaction was rate limiting relative to transport. Compared with control conditions, the phosphorylation rate constant was significantly increased with 2.8 mM glucose as well as in anoxia. With 4.5 ml/min and 11.2 mM glucose, conditions that should increase glucose flux into tissue without increasing demand, the phosphorylation rate constant decreased significantly. With 11.2 mM glucose, 96 paired stimuli/min, and anoxia without insulin, a significant increase in the hydrolysis rate of FDG 6-phosphate was observed and suggests that hydrolysis is also an important mechanism for regulating the MMRGlc. Increased transport rate constants were observed with increased flow rates, 96 paired stimuli/min, and anoxia at 96 beats/min. The LC was not significantly different from control in 11 of 14 conditions studied. Therefore, under most conditions, an average LC can be used to calculate MMRGlc estimates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources