Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep 2;10(54):32450-32475.
doi: 10.1039/d0ra05355d. eCollection 2020 Sep 1.

One-pot construction of carbohydrate scaffolds mediated by metal catalysts

Affiliations
Review

One-pot construction of carbohydrate scaffolds mediated by metal catalysts

Mana Mohan Mukherjee et al. RSC Adv. .

Abstract

Owing to the environmental concern worldwide and also due to cost, time and labour issues, use of one-pot reactions [domino/cascade/tandem/multi-component (MC) or sequential] has gained much attention among the scientific and industrial communities for the generation of compound libraries having different scaffolds. Inclusion of sugars in such compounds is expected to increase the pharmacological efficacy because of the possibility of better interactions with the receptors of such unnatural glycoconjugates. In many of the one-pot transformations, the presence of a metal salt/complex can improve the reaction/change the course of reaction with remarkable increase in chemo-/regio-/stereo-selectivity. On the other hand because of the importance of natural polymeric glycoconjugates in life processes, the development and efficient synthesis of related oligosaccharides, particularly utilising one-pot MC-glycosylation techniques are necessary. The present review is an endeavour to discuss one-pot transformations involving carbohydrates catalysed by a metal salt/complex.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. One-pot per-O-acetylation–thioglycosidation reaction.
Scheme 2
Scheme 2. Dy(OTf)3-catalysed conversion of free sugars to per-O-acetylated hemiacetals.
Scheme 3
Scheme 3. MoO2Cl2-catalysed one-pot multistep reaction.
Scheme 4
Scheme 4. One-pot acetalation–acetylation reaction of disaccharide glycosides.
Scheme 5
Scheme 5. Cu(OTf)2-catalysed tandem acetalation/acetylation/reductive opening of acetal ring.
Scheme 6
Scheme 6. One-pot regioselective protection of TMS-derived glucose towards glycosyl donor (12) and acceptors (13 and 14).
Scheme 7
Scheme 7. Probable mechanism for one-pot protection sequence of TMS derived sugar.
Scheme 8
Scheme 8. Tandem FeCl3·6H2O-catalysed reaction of TMS protected α,α-d-trehalose.
Scheme 9
Scheme 9. Regioselective sequential one-pot protection protocols of TMS derived 2-azido-2-deoxy-d-glucose.
Scheme 10
Scheme 10. Cu(OTf)2-catalysed one-pot regioselective protection of d-glucosamine.
Scheme 11
Scheme 11. Me2SnCl2-catalysed one-pot regioselective protection of polyols.
Scheme 12
Scheme 12. Catalytic cycle of organo-tin-catalysed reaction as proposed by Xu et al. (2014) (reproduced from ref. 25 with permission from John Wiley and sons, copyright 2020).
Scheme 13
Scheme 13. Bu2SnO-catalysed regioselective one-pot protection of 2,3,4,6-tetraols.
Scheme 14
Scheme 14. InCl3-catalysed Ferrier rearrangement-tandem cyclisation of 2-C-acetoxy glycal.
Scheme 15
Scheme 15. Sc(OTf)3-catalysed synthesis of pyrano[3,2-b]-1-benzopyrans.
Scheme 16
Scheme 16. Sc(OTf)3-catalysed ene-Prins reaction for generation of hexahydro-2H-furo[3,2-b]pyranopyrans.
Scheme 17
Scheme 17. In(OTf)3-catalysed synthesis of α-substituted furan derivatives.
Scheme 18
Scheme 18. Cu(OTf)2-catalysed one-pot MC-synthesis of triazole-furan-based glycoconjugates.
Scheme 19
Scheme 19. FeCl3 or FeBr3-catalysed tandem halogenated C-vinyl glycoside synthesis using inactivated aryl acetylene.
Scheme 20
Scheme 20. Pd(ii)-catalysed domino Heck–Suzuki arylation of glycals.
Scheme 21
Scheme 21. InCl3-catalysed three component preparation of oxaaza bicyclononene scaffolds.
Scheme 22
Scheme 22. Sc(OTf)3-catalysed one-pot domino synthesis of pentacyclic benzopyran fused pyranoquinolines.
Scheme 23
Scheme 23. Al(OTf)3-catalysed tandem synthesis of chiral bridged benzopyrans, and sugar-appended chromans and chromenes.
Scheme 24
Scheme 24. Pd(0)-catalysed domino synthesis of chromans and isochromans.
Scheme 25
Scheme 25. Proposed mechanistic pathway for one-pot conversation of 78 to 80.
Scheme 26
Scheme 26. One-pot cascade transformation of d-glucal into drug like scaffolds.
Scheme 27
Scheme 27. Pd2(dba)3-catalysed cascade reactions on sugar-based 1,6-enynes.
Scheme 28
Scheme 28. PdII–CuCl2-mediated domino reactions of sugar-based 1,6-diene and -enyne.
Scheme 29
Scheme 29. Pd-catalysed domino synthesis of functionalised C-glycals.
Scheme 30
Scheme 30. Pd(0)-catalysed electrophilic reactions of exo-glycal-based vinyl oxiranes.
Scheme 31
Scheme 31. One-pot synthesis of furanose-based carbohydrate templates.
Scheme 32
Scheme 32. FeCl3-catalysed tandem synthesis of sugar-based benzimidazoles.
Scheme 33
Scheme 33. 4-(3H)-Quinazolinone N-nucleoside synthesis.
Scheme 34
Scheme 34. Clay K10-catalysed 3C-one-pot synthesis of 4-aminobenzoxazinone N-nucleosides (110) and 1,3-benzoxazine-2-thione N-nucleosides (112).
Scheme 35
Scheme 35. One-pot tandem synthesis of triazolyl 2-quinolinone.
Scheme 36
Scheme 36. One-pot synthesis of sugar derived DHP ones.
Scheme 37
Scheme 37. CuBr-catalysed 3C one-pot synthesis of uridine analogues.
Scheme 38
Scheme 38. Palladium-catalysed one-pot synthesis of C-5 aminoalkyl substituted nucleosides.
Scheme 39
Scheme 39. Pd(0)-catalysed domino synthesis of amino acid anchored uracil nucleosides.
Scheme 40
Scheme 40. Diastereoselective synthesis of sugar appended R- or S-amino acid derivatives.
Scheme 41
Scheme 41. Sugar-based α-amino acid derivative.
Scheme 42
Scheme 42. InCl3 and NiCl2(PPh3)2-catalysed diastereoselective synthesis of C-glycosyl β-amino acid derivatives.
Scheme 43
Scheme 43. Bi(OTf)3-catalysed one-pot glycosylation–deprotection.
Scheme 44
Scheme 44. One-pot synthesis of 1,6-anhydrosugars and thioglycosides.
Scheme 45
Scheme 45. Palladium-catalysed tandem synthesis of unsymmetrical biaryl thioglycosides.
Scheme 46
Scheme 46. One-pot synthesis of C-aryl glycosides.
Scheme 47
Scheme 47. Meta-catalysed one-pot amidoglycosylation.
Scheme 48
Scheme 48. Cu(i)-catalysed one-pot synthesis of glycosylated N-sulfonylamidines.
Scheme 49
Scheme 49. CuBr–ZnI2-catalysed one-pot synthesis of quinoline glycoconjugates.
Scheme 50
Scheme 50. Domino synthesis of C-mannopyranocoumarins.
Scheme 51
Scheme 51. Synthesis of sugar annulated pyrroles.
Scheme 52
Scheme 52. Microwave-mediated clay K10-catalysed one-pot synthesis of thiosugar annulated bicyclic dihydropyrimidines (157 and 158) and bicyclic tetrahydropyrimidinones (or thiones) (159 and 160).
Scheme 53
Scheme 53. Iminosugar annulated perhydropyrimidines (161) and 1,3-oxazin-2-one/thione (162, 163) synthesis.
Scheme 54
Scheme 54. Fe(CO)5-catalysed intramolecular tandem isomerisation-Mannich reaction of sugar derived anomeric sulphonamides toward preparation of epimeric chiral aminocyclopentitols.
Scheme 55
Scheme 55. Yb(OTf)3-catalysed one-pot, double-differential glycosidation strategy.
Scheme 56
Scheme 56. Yb(OTf)3-catalysed one-pot glycosylations toward trisaccharide derivatives.
Scheme 57
Scheme 57. Synthesis of a pentasaccharide derivative by sequential metal-catalysed one-pot glycosylations.
Scheme 58
Scheme 58. Synthesis toward cyclic triterpene saponin utilising Au(i)-catalysed sequential one-pot glycosylation reactions.
Scheme 59
Scheme 59. Synthesis of tetrasaccharide derivatives by Au(i)-catalysed sequential one-pot glycosylation reactions.
Scheme 60
Scheme 60. Single catalyst-based one-pot synthesis of tetrasaccharide 214.
Scheme 61
Scheme 61. One-pot synthesis of tetrasaccharide-based on glycosyl ynenoate.
Scheme 62
Scheme 62. Different orthogonal one-pot strategies toward oligosaccharides.
Scheme 63
Scheme 63. Synthesis of pentasaccharide derivative by (a) sequential 3C one-pot glycosylation reactions; (b) sequential 4C one-pot glycosylation reactions.
None
Mana Mohan Mukherjee
None
Sajal Kumar Maity
None
Rina Ghosh

References

    1. For reviews or books on Domino reactions:

    2. Tietze L. F. Chem. Rev. 1996;96:115–136. doi: 10.1021/cr950027e. - DOI - PubMed
    3. Pellissier H. Chem. Rev. 2013;113:442–524. doi: 10.1021/cr300271k. - DOI - PubMed
    4. Domino and intramolecular rearrangement reactions as advanced synthesis methods in glycosciences, ed. Z. J. Witczak and R. Bielski, John Wiley & Sons, 2016, p. 368
    5. ; For cascade reactions:

    6. Metal catalysed cascade reactions, in Topics in organometallic chemistry, ed. T. J. J. Muller, Springer, Berlin, Germany, 2006, vol. 19, p. 339
    7. Nicolaou K. C. Edmonds D. J. Bulger P. l. G. Angew. Chem., Int. Ed. 2006;45:7134–7186. doi: 10.1002/anie.200601872. - DOI - PubMed
    8. Nicolaou K. C. Chen J. S. Chem. Soc. Rev. 2009;38:2993–3009. doi: 10.1039/B903290H. - DOI - PMC - PubMed
    9. Ohno H. Inuki S. Synthesis. 2018;50:700–710. doi: 10.1055/s-0036-1589165. - DOI
    10. ; For tandem reactions:

    11. Parsons P. J. Penkett C. S. Shell A. J. Chem. Rev. 1996;96:195–206. doi: 10.1021/cr950023+. - DOI - PubMed
    12. Wasilke J.-C. Obrey S. J. Baker R. T. Bazan G. C. Chem. Rev. 2005;105:1001–1020. doi: 10.1021/cr020018n. - DOI - PubMed
    13. Chapman C. J. Frost C. G. Synthesis. 2007:1–21.
    14. ; For one-pot multicomponent reactions:

    15. Dömling A. Chem. Rev. 2006;106:17–89. doi: 10.1021/cr0505728. - DOI - PubMed
    16. Sunderhaus J. D. Martin S. F. Chemistry. 2009;15:1300–1308. doi: 10.1002/chem.200802140. - DOI - PMC - PubMed
    17. Brauch S. Van Berkel S. S. Westermann B. Chem. Soc. Rev. 2013;42:4948–4962. doi: 10.1039/C3CS35505E. - DOI - PubMed
    18. Koszytkowska-Stawińska M. Buchowicz W. Beilstein J. Org. Chem. 2014;10:1706–1732. doi: 10.3762/bjoc.10.179. - DOI - PMC - PubMed
    19. Rossi B. Pastori N. Prosperini S. Punta C. Beilstein J. Org. Chem. 2015;11:66–73. doi: 10.3762/bjoc.11.10. - DOI - PMC - PubMed
    20. Malinakova H. C. Rep. Org. Chem. 2015;5:75–90. doi: 10.2147/ROC.S65115. - DOI
    21. Khan Md. M. Yousuf R. Khan S. Shafiullah RSC Adv. 2015;5:57883–57905. doi: 10.1039/C5RA08059B. - DOI
    22. Khan Md. M. Khan S. Saigal Iqbal S. RSC Adv. 2016;6:42045–42061. doi: 10.1039/C6RA06767K. - DOI
    1. Jackman J. E. Fierke C. A. Tumey L. N. Pirrung M. Uchiyama T. Tahir S. H. Hindsgaul O. Raetz C. R. J. Biol. Chem. 2000;275:11002–11009. doi: 10.1074/jbc.275.15.11002. - DOI - PubMed
    2. Hang H. C. Bertozzi C. R. J. Am. Chem. Soc. 2001;123:1242–1243. doi: 10.1021/ja002962b. - DOI - PubMed
    3. Li X. Uchiyama T. Raetz C. R. Hindsgaul O. Org. Lett. 2003;5:539–541. doi: 10.1021/ol027458l. - DOI - PubMed
    4. Liu X. Guo Y. Li Y. Jiang Y. Chubb S. Azuma A. Huang P. Matsuda A. Hittelman W. Plunkett W. Cancer Res. 2005;65:6874–6881. doi: 10.1158/0008-5472.CAN-05-0288. - DOI - PubMed
    5. Velter I. La Ferla B. Nicotra F. J. Carbohydr. Chem. 2006;25:97–138. doi: 10.1080/07328300600733020. - DOI
    6. Bernardi A. Cheshev P. Chem.–Eur. J. 2008;14:7434–7441. doi: 10.1002/chem.200800597. - DOI - PubMed
    7. Lepenies B. Yin J. Seeberger P. H. Curr. Opin. Chem. Biol. 2010;14:404–411. doi: 10.1016/j.cbpa.2010.02.016. - DOI - PubMed
    8. Bouché L. Reissig H.-U. Pure Appl. Chem. 2012;84:23–36.
    1. Lenci E. Menchi G. Trabocchi A. Org. Biomol. Chem. 2016;14:808–825. doi: 10.1039/C5OB02253C. - DOI - PubMed
    1. Essentials of glycobiology, ed. A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart and M. E. Etzler, C.S. Harbor Press, NY, 2009 - PubMed
    2. Seeberger P. H. and Cummings R. D., Glycans in Biotechnology and Pharmaceutical Industry, in Essentials of Glycobiology, Executive ed. A. Varki, C.S. Harbor Press, NY, 3rd edn, 2017, ch. 57, p. 823
    3. Rudd P. M. Dwek R. A. Curr. Opin. Struct. Biol. 2006;16:559–560. doi: 10.1016/j.sbi.2006.09.002. - DOI - PubMed
    1. Breinbauer R. Vetter I. R. Waldmann H. Angew. Chem., Int. Ed. 2002;41:2878–2890. doi: 10.1002/1521-3773(20020816)41:16<2878::AID-ANIE2878>3.0.CO;2-B. - DOI - PubMed