Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 29;12(20):12235-12241.
doi: 10.1039/d2ra00753c. eCollection 2022 Apr 22.

Regioselective C-3-alkylation of quinoxalin-2(1 H)-ones via C-N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis

Affiliations

Regioselective C-3-alkylation of quinoxalin-2(1 H)-ones via C-N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis

Gandhari Kishor et al. RSC Adv. .

Abstract

An efficient, transition metal-free visible-light-driven continuous-flow C-3-alkylation of quinoxalin-2(1H)-ones has been demonstrated by employing Katritzky salts as alkylating agents in the presence of eosin-y as a photoredox catalyst and DIPEA as a base at room temperature. The present protocol was accomplished by utilizing abundant and inexpensive alkyl amine (both primary and secondary alkyl) and as well as this a few amino acid feedstocks were converted into their corresponding redox-active pyridinium salts and subsequently into alkyl radicals. A wide variety of C-3-alkylated quinoxalin-2(1H)-ones were synthesized in moderate to high yields. Further this environmentally benign protocol is carried out in a PFA (Perfluoroalkoxy alkane) capillary based micro reactor under blue LED irradiation, enabling excellent yields (72% to 91%) and shorter reaction times (0.81 min) as compared to a batch system (16 h).

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. C-3-alkylation of quinoxalin-2(1H)-one derivatives in the reported works and this work.
Scheme 2
Scheme 2. Scale-Up experiment and synthetic application.
Scheme 3
Scheme 3. Control experiments.
Scheme 4
Scheme 4. Plausible mechanistic pathway.

Similar articles

Cited by

References

    1. Carta A. Piras S. Loriga G. Paglietti G. Mini-Rev. Med. Chem. 2006;6:1179–1200. - PubMed
    2. Liu R. Huang Z.-H. Murray M. G. Guo X.-Y. Liu G. J. Med. Chem. 2011;54:5747–5768. - PubMed
    3. Galal S. A. Khairat S. H. M. Ragab F. A. F. Abdelsamie A. S. Ali M. M. Sliman S. M. Mortier J. Wolber G. El Diwani H. Eur. J. Med. Chem. 2014;86:122–132. - PubMed
    4. Qin X. Hao X. Han H. Zhu S. Yang Y. Wu B. Hussain S. Parveen S. Jing C. Ma B. Zhu C. J. Med. Chem. 2015;58:1254–1267. - PubMed
    1. Udilova N. Kozlov A. V. Bieberschulte W. Frei K. Ehrenberger K. Nohl H. Biochem. Pharmacol. 2003;65:59–65. - PubMed
    2. Dudash J. Zhang Y. Moore J. B. Look R. Liang Y. Beavers M. P. Conway B. R. Rybczynski P. J. Demarest K. T. Bioorg. Med. Chem. Lett. 2005;15:4790–4793. - PubMed
    3. Abu-Hashem A. A. Gouda M. A. Badria F. A. Eur. J. Med. Chem. 2010;45:1976–1981. - PubMed
    4. Hussain S. Parveen S. Hao X. Zhang S. Wang W. Qin X. Yang Y. Chen X. Zhu S. Zhu C. Ma B. Eur. J. Med. Chem. 2014;80:383–392. - PubMed
    5. Issa D. A. E. Habib N. S. Abdel Wahab A. E. MedChemComm. 2015;6:202–211.
    1. Carrër A. Brion J. D. Messaoudi S. Alami M. Org. Lett. 2013;15:5606–5609. - PubMed
    2. Yin K. Zhang R. Org. Lett. 2017;19:1530–1533. - PubMed
    3. Yuan J. Liu S. Qu L. Adv. Synth. Catal. 2017;359:4197–4207.
    4. Paul S. Ha J. H. Park G. E. Lee Y. R. Adv. Synth. Catal. 2017;359:1515–1521.
    5. Zeng X. Liu C. Wang X. Zhang J. Wang X. Hu Y. Org. Biomol. Chem. 2017;15:8929–8935. - PubMed
    6. Yuan J.-W. Fu J.-H. Liu S.-N. Xiao Y.-M. Mao P. Qu L.-B. Org. Biomol. Chem. 2018;16:3203–3212. - PubMed
    7. Kim Y. Kim D. Y. Tetrahedron Lett. 2018;59:2443–2446.
    8. Gao M. Li Y. Xie L. Chauvin R. Cui X. Chem. Commun. 2016;52:2846–2849. - PubMed
    9. Xie L.-Y. Chen Y.-L. Qin L. Wen Y. Xie J.-W. Tan J.-X. Huang Y. Cao Z. He W.-M. Org. Chem. Front. 2019;6:3950–3955.
    10. Zhou J. Zhou P. Zhao T. Ren Q. Li J. Adv. Synth. Catal. 2019;361:5371–5382.
    11. Hoang T. T. To T. A. Cao V. T. T. Nguyen A. T. Nguyen T. T. Phan N. T. S. Catal. Commun. 2017;101:20–25.
    12. Wei W. Wang L. Bao P. Shao Y. Yue H. Yang D. Yang X. Zhao X. Wang H. Org. Lett. 2018;20:7125–7130. - PubMed
    13. Li K.-J. Xu K. Liu Y.-G. Zeng C.-C. Sun B.-G. Adv. Synth. Catal. 2019;361:1033–1041.
    14. Yuan J. Zhu J. Fu J. Yang L. Xiao Y. Mao P. Du X. Qu L. Org. Chem. Front. 2019;6:925–935.
    15. Wang L. Zhang Y. Li F. Hao X. Zhang H.-Y. Zhao J. Adv. Synth. Catal. 2018;360:3969–3977.
    16. Sun M. Wang L. Zhao L. Wang Z. Li P. ChemCatChem. 2020;12:5261–5268.
    1. Hu L. Q. Yuan J. W. Fu J. H. Zhang T. T. Gao L. L. Xiao Y. M. Mao P. Qu L. B. Eur. J. Org. Chem. 2018:4113–4120.
    2. Yuan J. Fu J. Yin J. Dong Z. Xiao Y. Mao P. Qu L. Org. Chem. Front. 2018;5:2820–2828.
    3. Fu J. Yuan J. Zhang Y. Xiao Y. Mao P. Diao X. Qu L. Org. Chem. Front. 2018;5:3382–3390.
    1. Yang L. Gao P. Duan X.-H. Gu Y.-R. Guo L.-N. Org. Lett. 2018;20:1034–1037. - PubMed
    2. Zhang W. Pan Y.-L. Yang C. Chen L. Li X. Cheng J.-P. J. Org. Chem. 2019;84:7786–7795. - PubMed
    3. Xia P.-J. Hu Y.-Z. Ye Z.-P. Li X.-J. Xiang H.-Y. Yang H. J. Org. Chem. 2020;85:3538–3547. - PubMed