Regioselective C-3-alkylation of quinoxalin-2(1 H)-ones via C-N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis
- PMID: 35517836
- PMCID: PMC9053435
- DOI: 10.1039/d2ra00753c
Regioselective C-3-alkylation of quinoxalin-2(1 H)-ones via C-N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis
Abstract
An efficient, transition metal-free visible-light-driven continuous-flow C-3-alkylation of quinoxalin-2(1H)-ones has been demonstrated by employing Katritzky salts as alkylating agents in the presence of eosin-y as a photoredox catalyst and DIPEA as a base at room temperature. The present protocol was accomplished by utilizing abundant and inexpensive alkyl amine (both primary and secondary alkyl) and as well as this a few amino acid feedstocks were converted into their corresponding redox-active pyridinium salts and subsequently into alkyl radicals. A wide variety of C-3-alkylated quinoxalin-2(1H)-ones were synthesized in moderate to high yields. Further this environmentally benign protocol is carried out in a PFA (Perfluoroalkoxy alkane) capillary based micro reactor under blue LED irradiation, enabling excellent yields (72% to 91%) and shorter reaction times (0.81 min) as compared to a batch system (16 h).
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures
Similar articles
-
Visible-Light-Induced Deaminative Alkylation/Cyclization of Alkyl Amines with N-Methacryloyl-2-phenylbenzoimidazoles in Continuous-Flow Organo-Photocatalysis.J Org Chem. 2021 Sep 17;86(18):12908-12921. doi: 10.1021/acs.joc.1c01555. Epub 2021 Sep 3. J Org Chem. 2021. PMID: 34477379
-
Radical alkylation of isocyanides with amino acid-/peptide-derived Katritzky salts via photoredox catalysis.Org Biomol Chem. 2019 Feb 6;17(6):1531-1534. doi: 10.1039/c8ob02786b. Org Biomol Chem. 2019. PMID: 30681112
-
Construction of C(sp2 )-C(sp3 ) Bond between Quinoxalin-2(1H)-ones and N-Hydroxyphthalimide Esters via Photocatalytic Decarboxylative Coupling.Chem Asian J. 2019 Oct 1;14(19):3344-3349. doi: 10.1002/asia.201900904. Epub 2019 Sep 3. Chem Asian J. 2019. PMID: 31432590
-
Recent Progress in Fragmentation of Katritzky Salts Enabling Formation of C-C, C-B, and C-S Bonds.Top Curr Chem (Cham). 2022 May 19;380(4):25. doi: 10.1007/s41061-022-00381-x. Top Curr Chem (Cham). 2022. PMID: 35585362 Review.
-
Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C-O bonds in organic transformations.Beilstein J Org Chem. 2024 Jun 14;20:1348-1375. doi: 10.3762/bjoc.20.119. eCollection 2024. Beilstein J Org Chem. 2024. PMID: 38887583 Free PMC article. Review.
Cited by
-
Regioselective Radical Cascade Cyclizations of Alkyne-Tethered Cyclohexadienones with Chalcogenides under Visible-Light Catalysis.ACS Omega. 2023 Sep 20;8(39):35809-35821. doi: 10.1021/acsomega.3c03362. eCollection 2023 Oct 3. ACS Omega. 2023. PMID: 37810637 Free PMC article.
References
-
- Carta A. Piras S. Loriga G. Paglietti G. Mini-Rev. Med. Chem. 2006;6:1179–1200. - PubMed
- Liu R. Huang Z.-H. Murray M. G. Guo X.-Y. Liu G. J. Med. Chem. 2011;54:5747–5768. - PubMed
- Galal S. A. Khairat S. H. M. Ragab F. A. F. Abdelsamie A. S. Ali M. M. Sliman S. M. Mortier J. Wolber G. El Diwani H. Eur. J. Med. Chem. 2014;86:122–132. - PubMed
- Qin X. Hao X. Han H. Zhu S. Yang Y. Wu B. Hussain S. Parveen S. Jing C. Ma B. Zhu C. J. Med. Chem. 2015;58:1254–1267. - PubMed
-
- Udilova N. Kozlov A. V. Bieberschulte W. Frei K. Ehrenberger K. Nohl H. Biochem. Pharmacol. 2003;65:59–65. - PubMed
- Dudash J. Zhang Y. Moore J. B. Look R. Liang Y. Beavers M. P. Conway B. R. Rybczynski P. J. Demarest K. T. Bioorg. Med. Chem. Lett. 2005;15:4790–4793. - PubMed
- Abu-Hashem A. A. Gouda M. A. Badria F. A. Eur. J. Med. Chem. 2010;45:1976–1981. - PubMed
- Hussain S. Parveen S. Hao X. Zhang S. Wang W. Qin X. Yang Y. Chen X. Zhu S. Zhu C. Ma B. Eur. J. Med. Chem. 2014;80:383–392. - PubMed
- Issa D. A. E. Habib N. S. Abdel Wahab A. E. MedChemComm. 2015;6:202–211.
-
- Carrër A. Brion J. D. Messaoudi S. Alami M. Org. Lett. 2013;15:5606–5609. - PubMed
- Yin K. Zhang R. Org. Lett. 2017;19:1530–1533. - PubMed
- Yuan J. Liu S. Qu L. Adv. Synth. Catal. 2017;359:4197–4207.
- Paul S. Ha J. H. Park G. E. Lee Y. R. Adv. Synth. Catal. 2017;359:1515–1521.
- Zeng X. Liu C. Wang X. Zhang J. Wang X. Hu Y. Org. Biomol. Chem. 2017;15:8929–8935. - PubMed
- Yuan J.-W. Fu J.-H. Liu S.-N. Xiao Y.-M. Mao P. Qu L.-B. Org. Biomol. Chem. 2018;16:3203–3212. - PubMed
- Kim Y. Kim D. Y. Tetrahedron Lett. 2018;59:2443–2446.
- Gao M. Li Y. Xie L. Chauvin R. Cui X. Chem. Commun. 2016;52:2846–2849. - PubMed
- Xie L.-Y. Chen Y.-L. Qin L. Wen Y. Xie J.-W. Tan J.-X. Huang Y. Cao Z. He W.-M. Org. Chem. Front. 2019;6:3950–3955.
- Zhou J. Zhou P. Zhao T. Ren Q. Li J. Adv. Synth. Catal. 2019;361:5371–5382.
- Hoang T. T. To T. A. Cao V. T. T. Nguyen A. T. Nguyen T. T. Phan N. T. S. Catal. Commun. 2017;101:20–25.
- Wei W. Wang L. Bao P. Shao Y. Yue H. Yang D. Yang X. Zhao X. Wang H. Org. Lett. 2018;20:7125–7130. - PubMed
- Li K.-J. Xu K. Liu Y.-G. Zeng C.-C. Sun B.-G. Adv. Synth. Catal. 2019;361:1033–1041.
- Yuan J. Zhu J. Fu J. Yang L. Xiao Y. Mao P. Du X. Qu L. Org. Chem. Front. 2019;6:925–935.
- Wang L. Zhang Y. Li F. Hao X. Zhang H.-Y. Zhao J. Adv. Synth. Catal. 2018;360:3969–3977.
- Sun M. Wang L. Zhao L. Wang Z. Li P. ChemCatChem. 2020;12:5261–5268.
-
- Hu L. Q. Yuan J. W. Fu J. H. Zhang T. T. Gao L. L. Xiao Y. M. Mao P. Qu L. B. Eur. J. Org. Chem. 2018:4113–4120.
- Yuan J. Fu J. Yin J. Dong Z. Xiao Y. Mao P. Qu L. Org. Chem. Front. 2018;5:2820–2828.
- Fu J. Yuan J. Zhang Y. Xiao Y. Mao P. Diao X. Qu L. Org. Chem. Front. 2018;5:3382–3390.
LinkOut - more resources
Full Text Sources