Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1987:49:163-75.
doi: 10.1146/annurev.ph.49.030187.001115.

Lateral diffusion of proteins in membranes

Review

Lateral diffusion of proteins in membranes

K Jacobson et al. Annu Rev Physiol. 1987.

Abstract

Membrane protein lateral diffusion can be constrained in several ways: Diffusion can be slower than that predicted for a simple, fluid lipid bilayer; diffusion can be confined to certain regions within the total membrane; and diffusion may not be equally probable in all directions, i.e. it may be anisotropic. We know that protein diffusion is reduced by increasing concentrations of membrane proteins and by interactions of the diffusant with structure(s) peripheral to the membrane. The molecular nature of such peripheral constraints has been difficult to pinpoint, but attention is now being directed to the extracellular matrix in addition to the membrane-associated cytoskeleton. There are many proteins that are confined to lateral domains in differentiated, isolated cells and in cells organized into tissue. The mechanisms that maintain such inhomogeneous distributions should be elucidated in the next few years. Whether lateral diffusion of membrane proteins over distances of a few micrometers is usually isotropic or anisotropic will be ascertained in the near future using imaging methods combined with photobleaching.

PubMed Disclaimer

Publication types

LinkOut - more resources