Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 12;10(50):29855-29867.
doi: 10.1039/d0ra06002j. eCollection 2020 Aug 10.

Revisiting the photochemical synthesis of [FeFe]-hydrogenase mimics: reaction optimization, mechanistic study and electrochemical behaviour

Affiliations

Revisiting the photochemical synthesis of [FeFe]-hydrogenase mimics: reaction optimization, mechanistic study and electrochemical behaviour

Sergio Aguado et al. RSC Adv. .

Abstract

The photoreaction of [(μ-S)2Fe2(CO)6] and alkenes or alkynes has been optimized to readily obtain functionalized [FeFe]-hydrogenase mimics. Irradiation under low CO pressure in THF produces the corresponding photo-adducts in good/acceptable (alkenes/alkynes) yields, with retention of the starting olefin stereochemistry. DFT-calculations provide plausible reaction pathways in both, singlet and triplet states. The DFT-calculation based in the singlet state is energetically more favorable. The electrochemical behavior of the synthesized compounds is also presented, including studies in acidic media. The electrochemical properties of the products vary in the presence of a double bond (cycloaddition of [(μ-S)2Fe2(CO)6] to alkynes), respect to a single bond (cycloaddition to alkenes).

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Fig. 1
Fig. 1. Schematic representation of [FeFe]-H2ase active site (I) and their synthetic mimics (II and III).
Scheme 1
Scheme 1. Synthesis of [FeFe]-H2ase synthetic models.
Scheme 2
Scheme 2. Photocycloaddition of 2 with 1- and 2-pentene 3a and 3b.
Scheme 3
Scheme 3. Photochemical reaction between [(μ-S)2Fe2(CO)6] 2 and olefins or alkynes 3. Initial optimizations.
Scheme 4
Scheme 4. Photochemical reaction of [(μ-S)2Fe2(CO)6] with olefins and alkynes. Substrate scope.
Fig. 2
Fig. 2. X-ray thermal ellipsoid plot for compound 4d (50% probability level) showing a C–H⋯OC intramolecular interaction. Selected bond lengths (Å) and angles (°): Fe(1)–Fe(2) 2.4966(3), Fe(1)–C(21) 1.7983(15), Fe(1)–C(22) 1.7990(15), Fe(1)–C(23) 1.8102(15), Fe(1)–S(1) 2.2428(4), Fe(1)–S(2) 2.2473(4), Fe(2)–C(24) 1.7995(16), Fe(2)–C(25) 1.8004(16), Fe(2)–C(26) 1.8077(15), Fe(2)–S(1) 2.2521(4), Fe(2)–S(2) 2.2513(4), S(1)–C(4) 1.8289(4), S(2)–C(3) 1.8434(4), C(3)–C(4) 1.5203(18), S(1)–Fe(1)–S(2) 81.488(14), S(1)–Fe(2)–S(2) 81.197(13), Fe(1)–S(1)–Fe(2) 67.478(12), Fe(1)–S(2)–Fe(2) 67.416(12), C(31)–N(1)–C(2) 119.64(10), C(31), C(12)⋯O(23) 3.310(2) Å; H(12)⋯O(23) 2.45 Å; C(12)–H(12)⋯O(23) 150.7°.
Scheme 5
Scheme 5. Photochemical reaction between [(μ-S)2Fe2(CO)6] and olefins or alkynes. Compatibility of the process with functionalized substrates. Compound 4i was a racemic material, one single enantiomer is represented for simplicity.
Scheme 6
Scheme 6. Photochemical reaction between [(μ-S)2Fe2(CO)6] and olefins or alkynes. Synthesis of polymetallic systems. Compounds 4l, 4m were racemic mixtures. Only one enantiomer is depicted for clarity.
Fig. 3
Fig. 3. Species implied in the photolysis of complex 2 according to Bruce King et al.
Fig. 4
Fig. 4. Cyclic voltammograms (focused on reduction) of selected compounds 4c,d (10−3 M in CH3CN), 10−1 M [N(nBu)4]PF6, counter-electrode: Pt; working electrode: glassy carbon; reference electrode: Ag/AgCl; scan rate: 100 mV s−1; values given in V. For full voltammograms see the ESI.
Scheme 7
Scheme 7. Reaction of complex 2 with methyl propiolate 3g.
Scheme 8
Scheme 8. Reaction of complex 2 with methyl acrylate 3e.
Fig. 5
Fig. 5. Cyclic voltammograms (focused on reduction) of compounds 4e and 4g (10−3 M in CH3CN), 10−1 M [N(nBu)4]PF6, counter-electrode: Pt; working electrode: glassy carbon; reference electrode: Ag/AgCl; scan rate: 100 mV s−1; values given in V.
Fig. 6
Fig. 6. LUMO's of complexes 4e, 4e˙, 4g and 4g˙.
Fig. 7
Fig. 7. (Top) Cyclic voltammograms of 4e with added HOAc (0–20 eq.). Data (V) obtained from 10−3 M acetonitrile solutions, containing 0.1 M [N(nBu)4]PF6 as supporting electrolyte at 20 °C. Potentials are relative to Ag/AgCl. (Bottom) Cyclic voltammograms of 4g with added HOAc (0–20 eq.). Data (V) obtained from 10−3 M acetonitrile solutions, containing 0.1 M [N(nBu)4]PF6 as supporting electrolyte at 20 °C. Potentials are relative to Ag/AgCl.
Fig. 8
Fig. 8. (Top) Cyclic voltammograms of 4e with added TFA (0–20 eq. of H+). Data (V) obtained from 10−3 M acetonitrile solutions, containing 0.1 M [N(nBu)4]PF6 as supporting electrolyte at 20 °C. Potentials are relative to Ag/AgCl. (Bottom) Cyclic voltammograms of 4g with added TFA (0–20 eq. of H+). Data (V) obtained from 10−3 M acetonitrile solutions, containing 0.1 M [N(nBu)4]PF6 as supporting electrolyte at 20 °C. Potentials are relative to Ag/AgCl.

Similar articles

Cited by

References

    1. Hydrogen as a Fuel: Learning from Nature, ed. R. Cammack, M. Frey and R. Robson, Taylor&Francis, 2001
    2. Compendium of Hydrogen Energy Volume 1: Hydrogen Production and Purification, ed. V. Subramani, A. Basile and T. N. Veziroğlu, Elsevier, 2015
    3. Dincer I. and Zamfirescu C., Sustainable Hydrogen Production, Elsevier, 2016
    4. Compendium of Hydrogen Energy Volume 4: Hydrogen Use, Safety and the Hydrogen Economy, ed. M. Ball, A. Basile and T. N. Veziroğlu, Elsevier, 2016
    5. Corredor J. Rivero M. J. Rangel C. M. Gloaguen F. Ortiz I. J. Chem. Technol. Biotechnol. 2019;94:3049–3063. doi: 10.1002/jctb.6123. - DOI
    1. Lubitz W. Ogata H. Rüdiger O. Reijerse W. Chem. Rev. 2014;114:4081–4148. doi: 10.1021/cr4005814. - DOI - PubMed
    2. Vignais P. M. Billoud B. Chem. Rev. 2007;107:4206–4272. doi: 10.1021/cr050196r. - DOI - PubMed
    1. See, for example:

    2. Reisner E. Powell D. J. Cavazza C. Fontecilla-Camps J. C. Armstrong F. A. J. Am. Chem. Soc. 2009;131:18457–18466. doi: 10.1021/ja907923r. - DOI - PubMed
    3. Brown K. A. S. Dayal S. Ai X. Rumbles G. King P. W. J. Am. Chem. Soc. 2010;132:9672–9680. doi: 10.1021/ja101031r. - DOI - PubMed
    4. Brown K. A. Wilker B. Boehm M. Dukovic G. King P. W. J. Am. Chem. Soc. 2012;134:5627–5636. doi: 10.1021/ja2116348. - DOI - PubMed
    5. Honda Y. Hagiwara H. Ida S. Ishihara T. Angew. Chem. Int. Ed. 2016;55:8045–8048. doi: 10.1002/anie.201600177. - DOI - PubMed
    1. Revisions:

    2. Schilter L. Camara J. M. Huynh M. T. Hammes-Schiffer S. Rauchfuss T. B. Chem. Rev. 2016;116:8693–8749. doi: 10.1021/acs.chemrev.6b00180. - DOI - PMC - PubMed
    3. Li Y. Rauchfuss T. B. Chem. Rev. 2016;116:7043–7077. doi: 10.1021/acs.chemrev.5b00669. - DOI - PMC - PubMed
    4. Gloaguen F. Inorg. Chem. 2016;55:390–398. doi: 10.1021/acs.inorgchem.5b02245. - DOI - PubMed
    5. Representative examples:

    6. Li H. Rauchfuss T. B. J. Am. Chem. Soc. 2002;124:726–727. doi: 10.1021/ja016964n. - DOI - PubMed
    7. Na Y. Pan J. Wang M. Sun L. Inorg. Chem. 2007;46:3813–3815. doi: 10.1021/ic070234k. - DOI - PubMed
    8. Gao S. Fan J. Sun S. Peng X. Zhao X. Hou J. Dalton Trans. 2008:2128–2135. doi: 10.1039/B717497G. - DOI - PubMed
    9. Li P. Wang M. Chen L. Liu J. Zhao Z. Sun L. Dalton Trans. 2009:1919–1926. doi: 10.1039/B814336F. - DOI - PubMed
    10. Apfel U.-P. Troegel D. Halpin Y. Tschierlei S. Uhlemann U. Görls H. Schmitt M. Popp J. Dunne P. Venkatesan M. Coey M. Rudolph M. Vos J. G. Tacke R. Weigand W. Inorg. Chem. 2010;49:10117–10132. doi: 10.1021/ic101399k. - DOI - PubMed
    11. Camara J. M. Rauchfuss T. B. Nat. Chem. 2012;4:26–30. doi: 10.1038/nchem.1180. - DOI - PMC - PubMed
    12. Zheng D. Wang M. Chen L. Wang N. Sun L. Inorg. Chem. 2014;53:1555–1561. doi: 10.1021/ic4025519. - DOI - PubMed
    13. Yu T. Zeng Y. Chen J. Li Y.-Y. Yang G. Li Y. Angew. Chem. Int. Ed. 2013;52:5631–5635. doi: 10.1002/anie.201301289. - DOI - PubMed
    1. An alternative route to incorporate moieties II and III in substrates incompatible with the standard synthetic approaches to these compounds is the use of Fe2[(μ-SCH2)2(NC6H4N3)](CO)6 reagents through a Cu-catalyzed alkyne-azide cycloaddition. See,

    2. Merinero A. D. Collado A. Casarrubios L. Gómez-Gallego M. Ramírez de Arellano C. Caballero A. Zapata F. Sierra M. A. Inorg. Chem. 2019;58:16267–16278. doi: 10.1021/acs.inorgchem.9b02813. - DOI - PubMed