Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 23;10(64):39033-39036.
doi: 10.1039/d0ra07677e. eCollection 2020 Oct 21.

Circular linkage of intramolecular multi-hydrogen bonding frameworks through nucleophilic substitutions of β-dicarbonyls onto cyanuric chloride and subsequent tautomerisation

Affiliations

Circular linkage of intramolecular multi-hydrogen bonding frameworks through nucleophilic substitutions of β-dicarbonyls onto cyanuric chloride and subsequent tautomerisation

Ayano Awatani et al. RSC Adv. .

Abstract

Nucleophilic substitution reactions of cyanuric chloride with a series of β-dicarbonyls give triply β-dicarbonyl-embedded 1,3,5-triazines. Their subsequent but spontaneous tautomeric transformation leads to circularly linked, intramolecular, multi-hydrogen bonding networks. Their structural elucidation by X-ray crystallography showed elongated double bonds and shortened single bonds. This is likely due to a resonance hybrid formed via tautomerisation and simultaneous proton transfer.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Chart 1
Chart 1. Selected examples demonstrating intramolecular proton transfers: (a) 1,8-dihydroxy-2-naphthaldehyde (DHNA) and its excited-state double proton transfer (ESDPT), (b) triquinolonobenzene, and (c) tautomerism of 2,4,6-tris(β-monocarbonyl)-1,3,5-triazine (TMCT).
Chart 2
Chart 2. Concept of this work: (i) nucleophilic substitution, (ii) tautomerism, and (iii) resonance.
Scheme 1
Scheme 1. Nucleophilic substitution reactions of β-dicarbonyls onto cyanuric acid with diisopropylethylamine in toluene at room temperature.
Fig. 1
Fig. 1. X-ray crystal structures of (a) 3a and (b) 4c. Thermal ellipsoids are set at 50% probability levels.
Scheme 2
Scheme 2. Nucleophilic substitution of β-dicarbonyls (2b–d) onto cyanuric acid with sodium hydride in toluene under reflux.
Fig. 2
Fig. 2. UV-visible absorption spectra of the synthesised products in dichloromethane.

Similar articles

References

    1. Kuhn B. Mohr P. Stahl M. J. Med. Chem. 2010;53:2601. doi: 10.1021/jm100087s. - DOI - PubMed
    2. Scheiner S. Molecules. 2017;22:1521. doi: 10.3390/molecules22091521. - DOI
    3. Sánchez G. Molecules. 2019;24:2858. doi: 10.3390/molecules24162858. - DOI
    4. Caron G. Kihlberg J. Ermondi G. Med. Res. Rev. 2019;39:1707–1729. doi: 10.1002/med.21562. - DOI - PubMed
    5. . and the references therein

    1. Tanaka Y. Shin J.-Y. Osuka A. Eur. J. Org. Chem. 2008:1341–1349. doi: 10.1002/ejoc.200701132. - DOI
    2. Xie Y.-S. Yamaguchi K. Toganoh M. Uno H. Suzuki M. Mori S. Saito S. Osuka A. Furuta H. Angew. Chem., Int. Ed. 2009;48:5496–5499. doi: 10.1002/anie.200900596. - DOI - PubMed
    3. Soya T. Kim W. Kim D. Osuka A. Chem.–Eur. J. 2015;21:8341–8346. doi: 10.1002/chem.201500650. - DOI - PubMed
    4. Li C. Zhang K. Ishida M. Li Q. Shimomura K. Baryshnikov G. Li X. Savage M. Wu X.-Y. Yang S. Furuta H. Xie Y. Chem. Sci. 2020;11:2790–2795. doi: 10.1039/C9SC06197E. - DOI - PMC - PubMed
    1. Woolfe G. J. Melzig M. Schneider S. Dorr F. C. Chem. Phys. 1983;77:213–221. doi: 10.1016/0301-0104(83)85078-2. - DOI
    2. Tobita S. Yamamoto M. Kurahayashi N. Tsukagoshi R. Nakamura Y. Shizuka H. J. Phys. Chem. A. 1998;102:5206–5214. doi: 10.1021/jp981368+. - DOI
    3. Padalkar V. S. Seki S. Chem. Soc. Rev. 2016;45:169–202. doi: 10.1039/C5CS00543D. - DOI - PubMed
    1. Peng C.-Y. Shen J.-Y. Chen Y.-T. Wu P.-J. Hung W.-Y. Hu W.-P. Chou P.-T. J. Am. Chem. Soc. 2015;137:14349–14357. doi: 10.1021/jacs.5b08562. - DOI - PubMed
    2. Chen Y.-T. Wu P.-J. Peng C.-Y. Shen J.-Y. Tsai C.-C. Hu W.-P. Chou P.-T. Phys. Chem. Chem. Phys. 2017;19:28641–28646. doi: 10.1039/C7CP05002J. - DOI - PubMed
    3. Mamada M. Inada K. Komino T. Potscavage Jr W. J. Nakanotani H. Adachi C. ACS Cent. Sci. 2017;3:769–777. doi: 10.1021/acscentsci.7b00183. - DOI - PMC - PubMed
    1. Cha W. Y. Soya T. Tanaka T. Mori H. Hong Y. Lee S. Park K. H. Osuka A. Kim D. Chem. Commun. 2016;52:6076–6078. doi: 10.1039/C6CC02051H. - DOI - PubMed
    2. Soya T. Mori H. Hong Y. Koo Y. H. Kim D. Osuka A. Angew. Chem., Int. Ed. 2017;56:3232–3236. doi: 10.1002/anie.201700607. - DOI - PubMed
    3. Umetani M. Kim J. Tanaka T. Kim D. Osuka A. Chem. Commun. 2019;55:10547–10550. doi: 10.1039/C9CC05580K. - DOI - PubMed