Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 22;9(12):6444-6451.
doi: 10.1039/c8ra10286d.

Enhanced oxygen evolution reaction on amine functionalized graphene oxide in alkaline medium

Affiliations

Enhanced oxygen evolution reaction on amine functionalized graphene oxide in alkaline medium

Vijay S Sapner et al. RSC Adv. .

Abstract

Development of highly efficient oxygen evolution reaction (OER) electrocatalysts is a critical challenge in the cost-effective generation of clean fuels. Here, a metal-free tyramine functionalized graphene oxide (T-GO) electrocatalyst is proposed to use in alkaline electrolytes for enhanced OER. Moreover, the T-GO and GO nanomaterials are well characterized by SEM, XRD, FTIR, XPS and Raman spectroscopy. T-GO exhibits an electrocatalytic OER with a current density of 2 mA cm-2 at a low onset potential of ∼1.39 V and a small Tafel slope of about 69 mV dec-1 and GO exhibits an onset potential of 1.51 V and Tafel slope of about 92 mV dec-1. Additionally, the current stability and RRDE based diffusion controlled response of the T-GO electrocatalyst are outstanding compared to GO. This study establishes metal free T-GO as an efficient electrocatalyst for the OER and used for cathodic production of hydrogen as a counter reaction in the field of water splitting.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Schematic representation of tyramine functionalized graphene oxide (T-GO).
Fig. 1
Fig. 1. Scanning electron microscopic images of (a) and (b) T-GO (different magnification) and (c) EDAX of T-GO confirms C, N and O.
Fig. 2
Fig. 2. Superimposed (a) XRD patterns and (b) FTIR spectra of as-prepared GO and T-GO.
Fig. 3
Fig. 3. (a) Raman spectra and (b) full scan XPS spectra for GO (i) and T-GO (ii).
Fig. 4
Fig. 4. Superimposed (a) LSV of (I) GCE (bare), (II) GO and (III) T-GO, (b) Tafel plots for (II) T-GO and (I) GO in 0.5 M KOH using SCE and Pt foil as reference and counter electrodes respectively (all potentials were normalized with RHE) at 50 mV s−1.
Fig. 5
Fig. 5. (a) Electrochemical chronoamperometric current stability at applied potential 1.39 V vs. RHE for 3600 s; inset shows superimposed LSV curves before and after these stability measurements for T-GO at 50 mV s−1. (b) Superimposed Nyquist plots for (I) GCE, (II) GO and (III) T-GO in 0.5 M KOH solution at applied potential of 1.39 V vs. RHE.
Scheme 2
Scheme 2. Reaction mechanism for probable electron transfer pathways for OER on T-GO in 0.5 M KOH.
Fig. 6
Fig. 6. Superimposed LSV curves of T-GO in 0.5 M KOH with different rotating rates from 0 to 3000 rpm.

Similar articles

Cited by

References

    1. Sayeed M. A. O'Mullane A. P. J. Mater. Chem. A. 2017;5:23776–23784. doi: 10.1039/C7TA08928G. - DOI
    2. Teng C. Yang X. Yang C. Li S. Cheng M. Hagfeldt A. Sun L. J. Phys. Chem. C. 2010;114:9101–9110. doi: 10.1021/jp101238k. - DOI
    1. Jin C. Lu F. Cao X. Yang Z. Yang R. J. Mater. Chem. A. 2013;1:12170–12177. doi: 10.1039/C3TA12118F. - DOI
    1. Seo B. Sa Y. J. Woo J. Kwon K. Park J. Shin T. J. Jeong H. Y. Joo S. H. ACS Catal. 2016;6:4347–4355. doi: 10.1021/acscatal.6b00553. - DOI
    2. Cui S. Liu X. Sun Z. Du P. ACS Sustainable Chem. Eng. 2016;4:2593–2600. doi: 10.1021/acssuschemeng.6b00067. - DOI
    1. Digraskar R. V. Sapner V. S. Narwade S. S. Mali S. M. Ghule A. V. Sathe B. R. RSC Adv. 2018;8:20341–20346. doi: 10.1039/C8RA01886C. - DOI - PMC - PubMed
    2. Zou X. Huang X. Goswami A. Silva R. Sathe B. R. Mikmekov E. Asefa T. Angew. Chem., Int. Ed. 2014;53:4372–4376. doi: 10.1002/anie.201311111. - DOI - PubMed
    3. Yue X. Huang S. Cai J. Jin Y. Shen P. K. J. Mater. Chem. A. 2017;5:7784–7790. doi: 10.1039/C7TA01957B. - DOI
    1. Jiao L. Zhou Y. Jiang H. L. Chem. Sci. 2016;7:1690–1695. doi: 10.1039/C5SC04425A. - DOI - PMC - PubMed
    2. Maruthapandian V. Mathankumar M. Saraswathy V. Subramanian B. Muralidharan S. ACS Appl. Mater. Interfaces. 2017;9:13132–13141. doi: 10.1021/acsami.6b16685. - DOI - PubMed
    3. Tao Z. Wang T. Wang X. Zheng J. Li X. ACS Appl. Mater. Interfaces. 2016;8:35390–35397. doi: 10.1021/acsami.6b13411. - DOI - PubMed
    4. Zhang Y. Fan X. Jian J. Yu D. Zhang Z. Dai L. Energy Environ. Sci. 2017;10:2312–2317. doi: 10.1039/C7EE01702B. - DOI