Crystal phase content-dependent functionality of dual phase SnO2-WO3 nanocomposite films via cosputtering crystal growth
- PMID: 35518496
- PMCID: PMC9060963
- DOI: 10.1039/c8ra08494g
Crystal phase content-dependent functionality of dual phase SnO2-WO3 nanocomposite films via cosputtering crystal growth
Abstract
In this study, crystalline SnO2-WO3 nanocomposite thin films were grown through radio-frequency cosputtering of metallic Sn and ceramic WO3 targets. The W content in the SnO2 matrix was varied from 5.4 at% to 12.3 at% by changing the WO3 sputtering power during thin-film growth. Structural analyses showed that increased WO3 phase content in the nanocomposite films reduced the degree of crystallization of the SnO2 matrix. Moreover, the size of the composite films' surface crystallites increased with WO3 phase content, and the large surface crystallites were composed of numerous nanograins. Addition of WO3 crystals to the SnO2 matrix to form a composite film improved its light harvesting ability. The SnO2-WO3 nanocomposite films exhibited improved photodegradation ability for Rhodamine B dyes compared with their individual constituents (i.e., SnO2 and WO3 thin films), which is attributable to the suitable type II band alignment between the SnO2 and WO3. Moreover, an optimal WO3 phase content (W content: 5.4 at%) in the SnO2 matrix substantially enhanced the ethanol gas-sensing response of the SnO2 thin film. This suggested that the heterojunctions at the SnO2/WO3 interface regions in the nanocomposite film considerably affected its ethanol gas-sensing behavior.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures










Similar articles
-
Enhancement of Acetone Gas-Sensing Responses of Tapered WO3 Nanorods through Sputtering Coating with a Thin SnO2 Coverage Layer.Nanomaterials (Basel). 2019 Jun 6;9(6):864. doi: 10.3390/nano9060864. Nanomaterials (Basel). 2019. PMID: 31174373 Free PMC article.
-
Enhanced NH3 and H2 gas sensing with H2S gas interference using multilayer SnO2/Pt/WO3 nanofilms.J Hazard Mater. 2021 Jun 15;412:125181. doi: 10.1016/j.jhazmat.2021.125181. Epub 2021 Jan 19. J Hazard Mater. 2021. PMID: 33951858
-
Visible photoassisted room-temperature oxidizing gas-sensing behavior of Sn2S3 semiconductor sheets through facile thermal annealing.Nanoscale Res Lett. 2016 Dec;11(1):505. doi: 10.1186/s11671-016-1720-2. Epub 2016 Nov 16. Nanoscale Res Lett. 2016. PMID: 27854080 Free PMC article.
-
Tailoring the Emission Behavior of WO3 Thin Films by Eu3+ Ions for Light-Emitting Applications.Nanomaterials (Basel). 2022 Dec 20;13(1):7. doi: 10.3390/nano13010007. Nanomaterials (Basel). 2022. PMID: 36615917 Free PMC article.
-
Improving methane gas sensing performance of flower-like SnO2 decorated by WO3 nanoplates.Talanta. 2019 Jul 1;199:603-611. doi: 10.1016/j.talanta.2019.03.014. Epub 2019 Mar 2. Talanta. 2019. PMID: 30952304
Cited by
-
Enhancement of Acetone Gas-Sensing Responses of Tapered WO3 Nanorods through Sputtering Coating with a Thin SnO2 Coverage Layer.Nanomaterials (Basel). 2019 Jun 6;9(6):864. doi: 10.3390/nano9060864. Nanomaterials (Basel). 2019. PMID: 31174373 Free PMC article.
-
Design of Nanoscaled Surface Morphology of TiO2-Ag2O Composite Nanorods through Sputtering Decoration Process and Their Low-Concentration NO2 Gas-Sensing Behaviors.Nanomaterials (Basel). 2019 Aug 11;9(8):1150. doi: 10.3390/nano9081150. Nanomaterials (Basel). 2019. PMID: 31405208 Free PMC article.
-
Enhanced Sensing Ability of Brush-Like Fe2O3-ZnO Nanostructures towards NO2 Gas via Manipulating Material Synergistic Effect.Int J Mol Sci. 2021 Jun 26;22(13):6884. doi: 10.3390/ijms22136884. Int J Mol Sci. 2021. PMID: 34206928 Free PMC article.
-
Improvement of Ethanol Gas-Sensing Responses of ZnO⁻WO3 Composite Nanorods through Annealing Induced Local Phase Transformation.Nanomaterials (Basel). 2019 Apr 30;9(5):669. doi: 10.3390/nano9050669. Nanomaterials (Basel). 2019. PMID: 31052171 Free PMC article.
References
-
- Liang Y. C. Lee C. M. Lo Y. J. RSC Adv. 2017;7:4724–4734. doi: 10.1039/C6RA25853K. - DOI
-
- Bhattacharjee A. Ahmaruzzaman Md. RSC Adv. 2015;5:66122–66133. doi: 10.1039/C5RA07578E. - DOI
-
- Zarkov A. Stanulis A. Mikoliunaite L. Salak A. Kareiva A. Thin Solid Films. 2018;649:219–224. doi: 10.1016/j.tsf.2018.01.056. - DOI
-
- Ben Ameur S. Belhadjltaief H. Barhoumi A. Duponchel B. Leroy G. Amlouk M. Guermazi H. Vacuum. 2018;155:546–552. doi: 10.1016/j.vacuum.2018.05.051. - DOI
LinkOut - more resources
Full Text Sources