Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 14;9(15):8369-8372.
doi: 10.1039/c9ra00995g. eCollection 2019 Mar 12.

1-Alkyl-3-alkylindolin-2-imine hydrochlorides as useful building blocks in the copper-catalyzed synthesis of polycyclic indoline scaffolds

Affiliations

1-Alkyl-3-alkylindolin-2-imine hydrochlorides as useful building blocks in the copper-catalyzed synthesis of polycyclic indoline scaffolds

Can Liu et al. RSC Adv. .

Abstract

A novel and efficient copper-catalyzed synthesis of dihydro-6H-indolo[2,3-b]quinoline derivatives has been developed by using 3-alkyl-1-alkylindolin-2-imine hydrochlorides as the building blocks. Furthermore, easy reduction of dihydro-6H-indolo[2,3-b]quinolines with diisobutylaluminum hydride provided tetrahydro-6H-indolo[2,3-b]quinoline derivatives in excellent yields. The present method shows some advantages including use of cheap cuprous chloride as the catalyst and tolerance of wide functional groups.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Structures of representative perophoramidine and communesin alkaloids with diverse biological activities.
Scheme 1
Scheme 1. Synthesis of polycyclic indoline scaffolds using tryptamine derivatives (a) or 1-alkyl-3-alkylindolin-2-imine hydrochlorides (b) as the useful building blocks.
Scheme 2
Scheme 2. (a) Reaction of 3-benzyl-1-methylindolin-2-imine hydrochloride (1g) with 2-iodobenzyl bromide (2a) in the absence of copper catalyst leading to 4. (b) Copper-catalyzed intramolecular cyclization of 4 under the standard conditions.
Scheme 3
Scheme 3. Reaction mechanism for the copper-catalyzed synthesis of dihydro-6H-indolo[2,3-b]quinolines (3).
Scheme 4
Scheme 4. Reduction of dihydro-6H-indolo[2,3-b]quinolines (3) with DIBAL-H leading to tetrahydro-6H-indolo[2,3-b]quinolines (5).

Similar articles

References

    1. Anthoni U., Christophersen C. and Nielsen P. H., in Alkaloids: Chemical and Biological Perspectives, ed. S. W.Pelletier, Wiley, New York, 1999, vol. 13, p. 163
    2. Pearce H. L., in The Alkaloids, ed. A.Brossi and M.Suffness, Academic, San Diego, CA, 1990, vol. 37, p. 145
    1. Dalsgaard P. W. Blunt J. W. Munro M. H. G. Frisvad J. C. Christophersen C. J. Nat. Prod. 2005;68:258. doi: 10.1021/np049646l. - DOI - PubMed
    2. Andersen B. Smedsgaard J. Frisvad J. C. J. Agric. Food Chem. 2004;52:2421. doi: 10.1021/jf035406k. - DOI - PubMed
    3. Hayashi H. Matsumoto H. Akiyama K. Biosci., Biotechnol., Biochem. 2004;68:753. doi: 10.1271/bbb.68.753. - DOI - PubMed
    4. Jadulco R. Edrada R. A. Ebel R. Berg A. Schaumann K. Wray V. Steube K. Proksch P. J. Nat. Prod. 2004;67:78. doi: 10.1021/np030271y. - DOI - PubMed
    5. Numata A. Takahashi C. Ito Y. Takada T. Kawai K. Usami Y. Matsumura E. Imachi M. Ito T. Hasegawa T. Tetrahedron Lett. 1993;34:2355. doi: 10.1016/S0040-4039(00)77612-X. - DOI
    1. Verbitski S. M. Mayne C. L. Davis R. A. Concepcion G. P. Ireland C. M. J. Org. Chem. 2002;67:7124. doi: 10.1021/jo026012f. - DOI - PubMed
    1. For a recent review, see:

    2. Trost B. M. Osipov M. Chem. –Eur. J. 2015;21:16318. doi: 10.1002/chem.201501735. - DOI - PMC - PubMed
    3. ; For selected papers, see:

    4. Yang J. Wu H. Shen Y. Qin Y. J. Am. Chem. Soc. 2007;129:13794. doi: 10.1021/ja075705g. - DOI - PubMed
    5. Liu P. Seo J. H. Weinreb S. M. Angew. Chem., Int. Ed. 2010;49:2000. doi: 10.1002/anie.200906818. - DOI - PMC - PubMed
    6. Seo J. H. Artman III G. D. Weinreb S. M. J. Org. Chem. 2006;71:8891. doi: 10.1021/jo061660a. - DOI - PMC - PubMed
    7. Belmar J. Funk R. L. J. Am. Chem. Soc. 2012;134:16941. doi: 10.1021/ja307277w. - DOI - PubMed
    8. Fuchs J. R. Funk R. L. J. Am. Chem. Soc. 2004;126:5068. doi: 10.1021/ja049569g. - DOI - PubMed
    9. Han S.-J. Vogt F. Krishnan S. May J. A. Gatti M. Virgil S. C. Stoltz B. M. Org. Lett. 2014;16:3316. doi: 10.1021/ol5013263. - DOI - PMC - PubMed
    10. Han S.-J. Vogt F. May J. A. Krishnan S. Gatti M. Virgil S. C. Stoltz B. M. J. Org. Chem. 2015;80:528. doi: 10.1021/jo502534g. - DOI - PMC - PubMed
    11. Zuo Z. Xie W. Ma D. J. Am. Chem. Soc. 2010;132:13226. doi: 10.1021/ja106739g. - DOI - PubMed
    12. Zuo Z. Ma D. Angew. Chem., Int. Ed. 2011;50:12008. doi: 10.1002/anie.201106205. - DOI - PubMed
    13. Sabahi A. Novikov A. Rainier J. D. Angew. Chem., Int. Ed. 2006;45:4317. doi: 10.1002/anie.200601278. - DOI - PubMed
    1. For reviews of dearomatization reactions, see:

    2. Roche S. P. Porco Jr J. A. Angew. Chem., Int. Ed. 2011;50:4068. doi: 10.1002/anie.201006017. - DOI - PMC - PubMed
    3. Zhuo C.-X. Zhang W. You S.-L. Angew. Chem., Int. Ed. 2012;51:12662. doi: 10.1002/anie.201204822. - DOI - PubMed