Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 5;10(36):21399-21405.
doi: 10.1039/d0ra02101f. eCollection 2020 Jun 2.

A pH tuning single fluorescent probe based on naphthalene for dual-analytes (Mg2+ and Al3+) and its application in cell imaging

Affiliations

A pH tuning single fluorescent probe based on naphthalene for dual-analytes (Mg2+ and Al3+) and its application in cell imaging

Chunwei Yu et al. RSC Adv. .

Abstract

In this study, a naphthalene Schiff-base P which serves as a dual-analyte probe for the quantitative detection of Al3+ and Mg2+ has been designed. The proposed probe showed an ''off-on'' fluorescent response toward Al3+ in ethanol-water solution (1 : 9, v/v, pH 6.3, 20 mM HEPES) over other metal ions and anions, while the detection by the probe could be switched to Mg2+ by regulating the pH from 6.3 to 9.4. The sensing mechanisms of P to Al3+/Mg2+ are attributed to inhibition of the photo-induced electron transfer (PET) process by the formation of 1 : 1 ligand-metal complexes. More importantly, the probe was applied successfully in living cells for the fluorescent cell-imaging of Al3+ and Mg2+.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Synthesis route of probe P.
Fig. 1
Fig. 1. (a) Fluorescence emission spectra of P (10 μM) in response to different metal ions (10 μM) in ethanol–water solution (1 : 9, v/v, 20 mM HEPES, pH 6.3); (b) fluorescence emission spectra of P (10 μM) in response to different metal ions (10 μM) in ethanol–water solution (1 : 9, v/v, 20 mM HEPES, pH 9.4).
Fig. 2
Fig. 2. (a) Fluorescence response of P (10 μM) with various concentrations of Al3+ in ethanol–water solution (1 : 9, v/v, 20 mM HEPES, pH 6.3). Inset: the fluorescence of P (10 μM) as a function of Al3+ concentration (0.5–5.0 μM); (b) fluorescence response of P (10 μM) with various concentrations of Mg2+ in ethanol–water solution (1 : 9, v/v, 20 mM HEPES, pH 9.4). Inset: the fluorescence of P (10 μM) as a function of Mg2+ concentration (1–8.0 μM).
Fig. 3
Fig. 3. (a) Absorbance of P (10 μM) with various concentrations of Al3+ in ethanol–water solution (1 : 9, v/v, 20 mM HEPES, pH 6.3); (b) absorbance of P (10 μM) with Al3+ (100 μM) in ethanol–water solution (1 : 9, v/v, 20 mM HEPES, pH 6.3).
Fig. 4
Fig. 4. (a) Absorbance of P (10 μM) with various concentrations of Mg2+ in ethanol–water solution (1 : 9, v/v, 20 mM HEPES, pH 9.4); (b) absorbance of P (10 μM) with Mg2+ (100 μM) in ethanol–water solution (1 : 9, v/v, 20 mM HEPES, pH 9.4).
Fig. 5
Fig. 5. Job's plot for determining the stoichiometry of P and (a) Al3+ and (b) Mg2+. The total concentration was kept at 50 μM.
Fig. 6
Fig. 6. 1H NMR titration of P with Mg2+.
Scheme 2
Scheme 2. Proposed binding modes of P with Al3+ and Mg2+.
Fig. 7
Fig. 7. (a-I) and (b-I) are the field images of P (10 μM) treated HepG2 cells. (a-II) and (b-II) represent fluorescence images treated with P (10 μM), in the presence of Al3+ or Mg2+ (1 μM), respectively; (a-III) and (b-III) indicate bright field images of cells shown in the panels, respectively. For all imaging, the samples were excited at 375 nm.
Fig. 8
Fig. 8. Confocal fluorescence images of HepG2 cells incubated with P (10 μM) and Hoechst 33 342 (1 μg mL−1) for 30 min. Cells loaded with Al3+ or Mg2+ (10 μM), then treated with P (10 μM) and Hoechst 33 342 (1 μg mL−1) for 30 min. (a-I), (b-I) Green and orange channels with P, respectively; (a-II), (b-II) Blue channel with Hoechst 33 342; (a-III), (b-III) Overlay of images showing fluorescence from P (a-I), (b-I) and Hoechst 33 342 (a-II), (b-II).

References

    1. He X. R. Liu H. B. Li Y. Wang S. Li Y. Wang N. Xiao J. Xu X. Zhu D. Adv. Mater. 2005;17:2811. doi: 10.1002/adma.200501173. - DOI
    2. Quang D. T. Kim J. S. Chem. Rev. 2007;107:3780. doi: 10.1021/cr068046j. - DOI - PubMed
    1. Wang J. L. Lin W. Y. Li W. L. Chem.–Eur. J. 2002;18:13629. doi: 10.1002/chem.201202146. - DOI - PubMed
    2. Schmitz C. Perraud A. Johnson C. O. Inabe K. Smith M. K. Penner R. Kurosaki T. Fleig A. Scharenberg A. M. Cell. 2003;114:191. doi: 10.1016/S0092-8674(03)00556-7. - DOI - PubMed
    1. Stepura O. B. Martynow A. I. Int. J. Cardiol. 2009;134:145. doi: 10.1016/j.ijcard.2009.01.047. - DOI - PubMed
    2. Wolf F. I. Torsello A. Fasanella A. Cittadini A. Mol. Asp. Med. 2003;24:11. doi: 10.1016/S0098-2997(02)00088-2. - DOI - PubMed
    1. Saris N. E. L. Mervaala E. Karppanen H. Khawaja J. A. Lewenstam A. Clin. Chim. Acta. 2000;294:1. doi: 10.1016/S0009-8981(99)00258-2. - DOI - PubMed
    1. Liu Z. C. Yang Z. Y. Li Y. X. Li T. R. Wang B. D. Li Y. Jin X. L. Inorg. Chim. Acta. 2013;395:77. doi: 10.1016/j.ica.2012.10.009. - DOI
    2. Qin J. C. Fan L. Li T. R. Yang Z. Y. Synth. Met. 2015;199:179. doi: 10.1016/j.synthmet.2014.11.030. - DOI
    3. Barceló J. Poschenrieder C. Environ. Exp. Bot. 2002;48:75. doi: 10.1016/S0098-8472(02)00013-8. - DOI
    4. King S. W. Savory J. Willis M. R. Gitelman H. J. Crit. Rev. Clin. Lab. Sci. 1981;14:1. doi: 10.3109/10408368109105861. - DOI - PubMed
    5. Parkinson I. S. Ward M. K. Kerr D. N. J. Clin. Pathol. 1981;34:1285. doi: 10.1136/jcp.34.11.1285. - DOI - PMC - PubMed
    6. Zhou J. Horev B. Hwang G. Klein M. I. Koo H. Benoit D. S. J. Mater. Chem. 2016;4:3075. doi: 10.1039/C5TB02054A. - DOI - PMC - PubMed
    7. Fu Y. L. Tu Y. Y. Fan C. B. Zheng C. H. Liu G. Pu S. Z. New J. Chem. 2016;40:8579. doi: 10.1039/C6NJ01458E. - DOI
    8. Pu S. Z. Zhang C. C. Fan C. B. Liu G. Dyes Pigm. 2016;129:24. doi: 10.1016/j.dyepig.2016.02.001. - DOI
    9. Ding H. C. Li B. Q. Pu S. Z. Liu G. Jia D. C. Yu Z. Sens. Actuators, B. 2017;247:26. doi: 10.1016/j.snb.2017.02.172. - DOI