Systematic study of TiO2/ZnO mixed metal oxides for CO2 photoreduction
- PMID: 35518894
- PMCID: PMC9066424
- DOI: 10.1039/c9ra03435h
Systematic study of TiO2/ZnO mixed metal oxides for CO2 photoreduction
Abstract
A two component three degree simplex lattice experimental design was employed to evaluate the impact of different mixing fractions of TiO2 and ZnO on an ordered mesoporous SBA-15 support for CO2 photoreduction. It was anticipated that the combined advantages of TiO2 and ZnO: low cost, non-toxicity and combined electronic properties would facilitate CO2 photoreduction. The fraction of ZnO had a statistically dominant impact on maximum CO2 adsorption (β 2 = 22.65, p-value = 1.39 × 10-4). The fraction of TiO2 used had a statistically significant positive impact on CO (β 1 = 9.71, p-value = 2.93 × 10-4) and CH4 (β 1 = 1.43, p-value = 1.35 × 10-3) cumulative production. A negative impact, from the interaction term between the fractions of TiO2 and ZnO, was found for CH4 cumulative production (β 3 = -2.64, p-value = 2.30 × 10-2). The systematic study provided evidence for the possible loss in CO2 photoreduction activity from sulphate groups introduced during the synthesis of ZnO. The decrease in activity is attributed to the presence of sulphate species in the ZnO prepared, which may possibly act as charge carrier and/or radical intermediate scavengers.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures










Similar articles
-
Highly selective CO2 photoreduction to CO on MOF-derived TiO2.RSC Sustain. 2023 Feb 17;1(3):494-503. doi: 10.1039/d2su00082b. eCollection 2023 May 11. RSC Sustain. 2023. PMID: 37215582 Free PMC article.
-
Co-embedding oxygen vacancy and copper particles into titanium-based oxides (TiO2, BaTiO3, and SrTiO3) nanoassembly for enhanced CO2 photoreduction through surface/interface synergy.J Colloid Interface Sci. 2022 Oct 15;624:348-361. doi: 10.1016/j.jcis.2022.05.092. Epub 2022 May 19. J Colloid Interface Sci. 2022. PMID: 35660903
-
Economic Hydrophobicity Triggering of CO2 Photoreduction for Selective CH4 Generation on Noble-Metal-Free TiO2-SiO2.J Phys Chem Lett. 2016 Aug 4;7(15):2962-6. doi: 10.1021/acs.jpclett.6b01287. Epub 2016 Jul 20. J Phys Chem Lett. 2016. PMID: 27415144
-
Recent Advances in TiO2-Based Heterojunctions for Photocatalytic CO2 Reduction With Water Oxidation: A Review.Front Chem. 2021 Apr 15;9:637501. doi: 10.3389/fchem.2021.637501. eCollection 2021. Front Chem. 2021. PMID: 33937191 Free PMC article. Review.
-
Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction.Adv Mater. 2019 Sep;31(36):e1900709. doi: 10.1002/adma.201900709. Epub 2019 Jul 4. Adv Mater. 2019. PMID: 31271262 Review.
Cited by
-
Highly selective CO2 photoreduction to CO on MOF-derived TiO2.RSC Sustain. 2023 Feb 17;1(3):494-503. doi: 10.1039/d2su00082b. eCollection 2023 May 11. RSC Sustain. 2023. PMID: 37215582 Free PMC article.
-
Hierarchical hyper-branched titania nanorods with tuneable selectivity for CO2 photoreduction.RSC Adv. 2021 Sep 28;11(51):32022-32029. doi: 10.1039/d1ra05414g. eCollection 2021 Sep 27. RSC Adv. 2021. PMID: 35495501 Free PMC article.
-
Effect of the Synthetic Parameters over ZnO in the CO2 Photoreduction.Molecules. 2023 Jun 16;28(12):4798. doi: 10.3390/molecules28124798. Molecules. 2023. PMID: 37375353 Free PMC article.
-
Facile one-pot synthesis of heterostructure SnO2/ZnO photocatalyst for enhanced photocatalytic degradation of organic dye.RSC Adv. 2020 Jun 22;10(40):23554-23565. doi: 10.1039/d0ra03233f. eCollection 2020 Jun 19. RSC Adv. 2020. PMID: 35517351 Free PMC article.
References
-
- Ola O. Maroto-Valer M. J. Photochem. Photobiol., C. 2015;24:16–42. doi: 10.1016/j.jphotochemrev.2015.06.001. - DOI
-
- Olivo A. Zanardo D. Ghedini E. Menegazzo F. Signoretto M. ChemEngineering. 2018;2:42. doi: 10.3390/chemengineering2030042. - DOI
-
- Belmoujahid Y. Bonne M. Scudeller Y. Schleich D. Grohens Y. Lebeau B. Microporous Mesoporous Mater. 2015;201:124–133. doi: 10.1016/j.micromeso.2014.09.014. - DOI
-
- Zhao D. Huo Q. Feng J. Chmelka B. F. Stucky G. D. J. Am. Chem. Soc. 1998;120:6024–6036. doi: 10.1021/ja974025i. - DOI
-
- Zhao C. Liu L. Zhang Q. Wang J. Li Y. Catal. Sci. Technol. 2012;2:2558–2568. doi: 10.1039/C2CY20346D. - DOI
LinkOut - more resources
Full Text Sources