Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 10;10(67):40894-40903.
doi: 10.1039/d0ra08134e. eCollection 2020 Nov 9.

Transaminase-mediated synthesis of enantiopure drug-like 1-(3',4'-disubstituted phenyl)propan-2-amines

Affiliations

Transaminase-mediated synthesis of enantiopure drug-like 1-(3',4'-disubstituted phenyl)propan-2-amines

Ágnes Lakó et al. RSC Adv. .

Abstract

Transaminases (TAs) offer an environmentally and economically attractive method for the direct synthesis of pharmaceutically relevant disubstituted 1-phenylpropan-2-amine derivatives starting from prochiral ketones. In this work, we report the application of immobilised whole-cell biocatalysts with (R)-transaminase activity for the synthesis of novel disubstituted 1-phenylpropan-2-amines. After optimisation of the asymmetric synthesis, the (R)-enantiomers could be produced with 88-89% conversion and >99% ee, while the (S)-enantiomers could be selectively obtained as the unreacted fraction of the corresponding racemic amines in kinetic resolution with >48% conversion and >95% ee.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. APIs containing the 1-phenylpropan-2-amine building block.
Scheme 1
Scheme 1. Chemical methods for the synthesis of (R)-1-phenylpropan-2-amine.
Scheme 2
Scheme 2. Biocatalytic syntheses of (R)-1-phenylpropan-2-amine.
Scheme 3
Scheme 3. Transaminase-catalysed biotransformations leading to the (R)- and (S)-enantiomers of 1-arylpropan-2-amines 8a–d.
Scheme 4
Scheme 4. Synthesis of racemic disubstituted 1-phenylpropan-2-amines (8b–d). Reaction conditions: (i) A: 10 (20 mmol), K2CO3 (1 equiv.), Me2SO4 (2 equiv.) in 75 mL acetone, reflux; B: 10 (9.9 mmol), K2CO3 (1.5 equiv.), EtI (1.25 equiv.) in 15 mL DMF; C: 10 (6.6 mmol), K2CO3 (1.5 equiv.), iPrBr (1.5 equiv.) in 6.6 mL DMF, 80 °C; (ii) 9b–d (6 mmol), (±)-2-chloropropionic acid methyl ester (1.2 equiv.), NaOMe/MeOH (1.15 mmol, 25 wt%) in toluene (10 mL); 1N NaOH in toluene at 50 °C; 5N HCl in toluene, reflux; (iii) 7b–d (1 mmol), ammonium formate (10 equiv.), 10% Pd/C (0.04 equiv.) in 5 mL methanol.
Fig. 2
Fig. 2. Various amine donors facilitating the displacement of the equilibrium of transamination.
Fig. 3
Fig. 3. Screening the amine donors in ArR-TA-mediated transamination of 1-phenylpropan-2-one (7a). Reaction conditions: immobilised whole-cell TA biocatalyst (20 mg), 7a (10 mM), amine donor (10–100 mM), PLP (1 mM), sodium phosphate buffer (100 mM, pH 7.5), DMSO (5 v/v%), 30 °C, 24 h.
Fig. 4
Fig. 4. The effect of initial substrate concentration on the conversion of the transamination of 1-phenylpropan-2-one (7a) mediated by ArR-TA or AtR-TA (panel (a)); or ArRm-TA (panel (b)). Reaction conditions: immobilised whole-cell TA biocatalyst (20 mg), 7a (10–100 mM), sec-butylamine 12 (0.1–1 M), PLP (1 mM), sodium phosphate buffer (100 mM, pH 7.5), DMSO (5 v/v%), 30 °C, 24 h.
Fig. 5
Fig. 5. Cosolvent effect on conversion of the ArR-TA-mediated transamination of 1-phenylpropan-2-one (7a). Reaction conditions: immobilised whole-cell TA biocatalyst (20 mg), 7a (10 mM), sec-butylamine 12 (100 mM), PLP (1 mM), sodium phosphate buffer (100 mM, pH 7.5), DMSO (0–25 v/v%), 30 °C, 24 h.
Fig. 6
Fig. 6. AtR-TA-mediated kinetic resolution of the racemic amines 8a–d. Reaction conditions: immobilised whole-cell TA biocatalyst (20 mg), 8a–d (10 mM), sodium pyruvate (5 mM), PLP (1 mM), sodium phosphate buffer (100 mM, pH 7.5), DMSO (5 v/v%), 30 °C, 24 h.

Similar articles

Cited by

References

    1. Ghislieri D. Turner N. J. Top. Catal. 2014;57:284–300. doi: 10.1007/s11244-013-0184-1. - DOI
    1. Nugent T. C., Chiral Amine Synthesis: Methods, Developments and Applications, Wiley-VCH, 2010
    1. Kim Y. J. Choi Y. S. Yang S. Yang W. R. Jeong J. H. Synlett. 2015;26:1981–1984. doi: 10.1055/s-0034-1380427. - DOI
    1. Chen Z. Ma Y. He M. Ren H. Zhou S. Lai D. Wang Z. Jiang L. Appl. Biochem. Biotechnol. 2015;176:2267–2278. doi: 10.1007/s12010-015-1716-x. - DOI - PubMed
    1. Hanson R. L. Davis B. L. Chen Y. Goldberg S. L. Parker W. L. Tully T. P. Montana M. A. Patel R. N. Adv. Synth. Catal. 2008;350:1367–1375. doi: 10.1002/adsc.200800084. - DOI