Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 7;9(25):13959-13967.
doi: 10.1039/c9ra02569c.

Synthesis of tetracyclic indolin-3-ones through Pd-catalyzed intramolecular deacetylative dearomatization of 3-acetoxy-indoles

Affiliations

Synthesis of tetracyclic indolin-3-ones through Pd-catalyzed intramolecular deacetylative dearomatization of 3-acetoxy-indoles

Ren-Xiao Liang et al. RSC Adv. .

Abstract

An efficient palladium-catalyzed intramolecular deacetylative dearomatization reaction of 3-acetoxyindoles has been developed. A range of tetracyclic indolin-3-ones bearing C2-quaternary stereocenters are achieved in good yields, showing a wide substrate scope for this reaction. A preliminary enantioselective reaction is established to furnish the product in 63% ee by using (R,R,R)-phosphoramide-PE as a chiral ligand.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Selected biologically active compounds containing indolin-3-one core.
Scheme 1
Scheme 1. Pd-catalyzed dearomatizing arylation of phenols and 3-acetoxyindoles.
Scheme 2
Scheme 2. Substrate scope. Reaction conditions: 1 (0.2 mmol), 5 mol% Pd(OAc)2, tBu-XPhos (10 mol%), Na2CO3 (2.0 equiv.), H2O (2.0 equiv.), and DMF (2.0 mL) at 100 °C for indicated time (X = I). aX = Br.
Scheme 3
Scheme 3. Synthetic transformations.
Scheme 4
Scheme 4. Preliminary result of the enantioselective reaction.
Scheme 5
Scheme 5. A plausible reaction mechanism.

Similar articles

References

    1. Williams R. M. Glinka T. Kwast E. Coffman H. Stille J. K. J. Am. Chem. Soc. 1990;112:808. doi: 10.1021/ja00158a048. - DOI
    2. Liu J.-F. Jiang Z.-Y. Wang R.-R. Zeng Y.-T. Chen J.-J. Zhang X.-M. Ma Y.-B. Org. Lett. 2007;9:4127. doi: 10.1021/ol701540y. - DOI - PubMed
    3. Kumar C. V. S. Puranik V. G. Ramana C. V. Chem.–Eur. J. 2012;18:9601. doi: 10.1002/chem.201103604. - DOI - PubMed
    4. Abe T. Kukita A. Akiyama K. Naito T. Uemura D. Chem. Lett. 2012;41:728. doi: 10.1246/cl.2012.728. - DOI
    5. Gu W. Zhang Y. Hao X.-J. Yang F. M. Sun Q.-Y. Morris-Natschke S. L. Lee K.-H. Wang Y.-H. Long C.-L. J. Nat. Prod. 2014;77:2590. doi: 10.1021/np5003274. - DOI - PubMed
    1. For selected recent examples:

    2. Yin Q. You S.-L. Chem. Sci. 2011;2:1344. doi: 10.1039/C1SC00190F. - DOI
    3. Rueping M. Raja S. Núñez A. Adv. Synth. Catal. 2011;353:563. doi: 10.1002/adsc.201000952. - DOI
    4. Parra A. Alfaro R. Marzo L. Moreno-Carrasco A. Garcia Ruano J. L. Aleman J. Chem. Commun. 2012;48:9759. doi: 10.1039/C2CC34053D. - DOI - PubMed
    5. Zhao Y.-L. Wang Y. Cao J. Liang Y.-M. Xu P.-F. Org. Lett. 2014;16:2438. doi: 10.1021/ol5008185. - DOI - PubMed
    6. Liu R.-R. Ye S.-C. Lu C.-J. Zhuang G.-L. Gao J.-R. Jia Y.-X. Angew. Chem., Int. Ed. 2015;54:11205. doi: 10.1002/anie.201504697. - DOI - PubMed
    7. Li J.-S. Liu Y.-J. Li S. Ma J.-A. Chem. Commun. 2018;54:9151. doi: 10.1039/C8CC05125A. - DOI - PubMed
    8. Li P. Yong W. Sheng R. Rao W. Zhu X. Zhang X. Adv. Synth. Catal. 2019;361:201. doi: 10.1002/adsc.201801162. - DOI
    1. For recent reviews:

    2. Chen Q.-A. Ye Z.-S. Duan Y. Zhou Y.-G. Chem. Soc. Rev. 2013;42:497. doi: 10.1039/C2CS35333D. - DOI - PubMed
    3. Ding Q. Zhou X. Fan R. Org. Biomol. Chem. 2014;12:4807. doi: 10.1039/C4OB00371C. - DOI - PubMed
    4. Zhuo C.-X. Cheng C. You S.-L. Acc. Chem. Res. 2014;47:2558. doi: 10.1021/ar500167f. - DOI - PubMed
    5. Denizot N. Tomakinian T. Beaud R. Kouklovsky C. Vincent G. Tetrahedron Lett. 2015;56:4413. doi: 10.1016/j.tetlet.2015.05.078. - DOI
    6. Chen W. T. Zhang L. You S.-L. Chem. Soc. Rev. 2016;45:1570. doi: 10.1039/C5CS00356C. - DOI - PubMed
    7. Sun W. Li G. Hong L. Wang R. Org. Biomol. Chem. 2016;14:2164. doi: 10.1039/C5OB02526E. - DOI - PubMed
    1. For selected recent examples:

    2. Bedford R. B. Fey N. Haddow M. F. Sankey R. F. Chem. Commun. 2011;47:3649. doi: 10.1039/C0CC05033D. - DOI - PubMed
    3. Wu K.-J. Dai L.-X. You S.-L. Org. Lett. 2012;14:3772. doi: 10.1021/ol301663h. - DOI - PubMed
    4. Yin B. Cai C. Zeng G. Zhang R. Li X. Jiang H. Org. Lett. 2012;14:1098. doi: 10.1021/ol300008d. - DOI - PubMed
    5. Wu K.-J. Dai L.-X. You S.-L. Chem. Commun. 2013;49:8620. doi: 10.1039/C3CC44631J. - DOI - PubMed
    6. Hata K. He Z. Daniliuc C. G. Itami K. Studer A. Chem. Commun. 2014;50:463. doi: 10.1039/C3CC47350C. - DOI - PubMed
    7. Ramella V. He Z. Daniliuc C. G. Studer A. Eur. J. Org. Chem. 2016:2268. doi: 10.1002/ejoc.201600194. - DOI
    8. Lei X. Xie H.-Y. Xu C. Liu X. Wen X. Sun H. Xu Q.-L. Adv. Synth. Catal. 2016;358:1892. doi: 10.1002/adsc.201600135. - DOI
    9. Liu J. Peng H. Lu L. Xu X. Jiang H. Yin B. Org. Lett. 2016;18:6440. doi: 10.1021/acs.orglett.6b03339. - DOI - PubMed
    10. Yang P. You S.-L. Org. Lett. 2018;20:7684. doi: 10.1021/acs.orglett.8b03425. - DOI - PubMed
    1. Zhao L. Li Z. Chang L. Xu J. Yao H. Wu X. Org. Lett. 2012;14:2066. doi: 10.1021/ol300584m. - DOI - PubMed
    2. Gao S. Yang C. Huang Y. Zhao L. Wu X. Yao H. Lin A. Org. Biomol. Chem. 2016;14:840. doi: 10.1039/C5OB01970B. - DOI - PubMed
    3. Douki K. Ono H. Taniguchi T. Shimokawa J. Kitamura M. Fukuyama T. J. Am. Chem. Soc. 2016;138:14578. doi: 10.1021/jacs.6b10237. - DOI - PubMed
    4. Li X. Zhou B. Yang R.-Z. Yang F.-M. Liang R.-X. Liu R.-R. Jia Y.-X. J. Am. Chem. Soc. 2018;140:13945. doi: 10.1021/jacs.8b09186. - DOI - PubMed