Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 18;9(39):22384-22388.
doi: 10.1039/c9ra05350f. eCollection 2019 Jul 17.

Establishment of atropisomerism in 3-indolyl furanoids: a synthetic, experimental and theoretical perspective

Affiliations

Establishment of atropisomerism in 3-indolyl furanoids: a synthetic, experimental and theoretical perspective

Sourav Chatterjee et al. RSC Adv. .

Abstract

Introduction of axial chirality in bioactive 3-indolyl furanoids has been achieved by systematic alteration of functional groups around the stereogenic axis, keeping in mind that atropisomerically pure analogues may possess different binding affinities and selectivities towards a target protein. The kinetics of racemization of axially chiral 3-indolyl furanoids have been studied through chiral HPLC analysis, electronic circular dichroism (ECD) spectroscopy, and computational modeling. The results identify the configurational parameters for optically pure 3-indolyl furanoids to exist as stable and isolable atropisomeric form.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Axial chirality in indole-based heterobiaryls.
Fig. 2
Fig. 2. (a) Bioactivity of 3-indolyl furanoids. (b) Sequential increase of steric demand along its stereogenic axis towards conformational stability of bioactive 3-indolyl furanoids.
Fig. 3
Fig. 3. (a) CD spectra of the two enantiomers of 3db. (b) Comparison of experimental CD spectrum (in mdeg) of (+)-3db with theoretical predictions (in delta epsilon). Structure and curve in grey represent the lowest energy conformation observed B3LYP/6-311+G** in implicit ethanol, which coincides with the (S)-configuration of one of two crystal conformations. Structure and curve in blue represent the second lowest energy (S)-configuration observed. The Boltzmann weighted CD prediction (black dotted curve) of two lowest energy conformations (grey and blue) is also shown.
Fig. 4
Fig. 4. Chiral HPLC profile of 3db.
Fig. 5
Fig. 5. DFT (M062X/6-311G**) optimized structures of 3db. (a) Higher energy TS (ΔGrac = 28.2 kcal mol−1), (b) ground state, (c) lower energy TS (ΔGrac = 26.0 kcal mol−1).
Fig. 6
Fig. 6. Two optimized structures of 3dg. (a) Lowest energy structure, (b) higher energy local minimum featuring the furan and ortho-methoxy oxygens in closer proximity.

Similar articles

Cited by

References

    1. Eliel E. L. and Wilen S. H., Stereochemistry of Organic Compounds, Wiley, New York, 1994
    1. Bringmann G. Gulder T. Gulder T. A. M. Breuning M. Chem. Rev. 2011;111:563. doi: 10.1021/cr100155e. - DOI - PubMed
    2. Qin T. Joiner S. L. S. Khalil Z. G. Johnson R. P. Capon R. J. Porco Jr J. A. Nat. Chem. 2015;7:234. doi: 10.1038/nchem.2173. - DOI - PMC - PubMed
    3. Bringmann G. Menche D. Acc. Chem. Res. 2001;34:615. doi: 10.1021/ar000106z. - DOI - PubMed
    4. Baudoin O. Gueritte F. Stud. Nat. Prod. Chem. 2003;29:355.
    5. Qin T. Joiner S. L. S. Khalil Z. G. Johnson R. P. Capon R. J. Porco Jr J. A. Nat. Chem. 2015;7:234. doi: 10.1038/nchem.2173. - DOI - PMC - PubMed
    6. Clayden J. Moran W. J. Edwards P. J. LaPlante S. R. Angew. Chem., Int. Ed. 2009;48:6398. doi: 10.1002/anie.200901719. - DOI - PubMed
    7. Qiu L. Wu J. Chan S. A-Yeung T. T.-L. Ji J. X. Guo R. Pai C. C. Zhou Z. Li X. Fan Q. H. Chan A. S. C. Proc. Natl. Acad. Sci. U. S. A. 2004;101:5815. doi: 10.1073/pnas.0307774101. - DOI - PMC - PubMed
    1. Zask A. Murphy J. Ellestad G. A. Chirality. 2013;25:265. doi: 10.1002/chir.22145. - DOI - PubMed
    2. Takahashi H. Wakamatsu S. Tabata H. Oshitari T. Harada A. Inoue K. Natsugari H. Org. Lett. 2011;13:4760. - PubMed
    3. Smith D. E. Marquez I. Lokensgard M. E. Rheingold A. L. Hecht D. A. Gustafson J. L. Angew. Chem., Int. Ed. 2015;54:11754. doi: 10.1002/anie.201506085. - DOI - PubMed
    1. Jaisankar P., Swarnakar S., Chatterjee S., Verma S., Mandal M., and Chaudhuri S. R., US Pat., US20180230135, 2018
    2. Unpublished results.

    1. Zhang S. Yao Q. J. Liao G. Li X. Li H. Chen H. M. Hong X. Shi B. F. ACS Catal. 2019;9:1956. doi: 10.1021/acscatal.8b04870. - DOI
    2. Raut V. S. Jean M. Vanthuyne N. Roussel C. Constantieux T. Bressy C. Bugaut X. Bonne D. Rodriguez J. J. Am. Chem. Soc. 2017;139:2140. doi: 10.1021/jacs.6b11079. - DOI - PubMed
    3. Cardoso F. S. P. Abboud K. A. Aponick A. J. Am. Chem. Soc. 2013;135:14548. doi: 10.1021/ja407689a. - DOI - PubMed
    4. Alkorta I. Elguero J. Roussel C. Vanthuyne N. Piras P. Adv. Heterocycl. Chem. 2012;105:1. doi: 10.1016/B978-0-12-396530-1.00001-2. - DOI
    5. Bonne D. Rodriguez J. Chem. Commun. 2017;53:12385. doi: 10.1039/C7CC06863H. - DOI - PubMed
    6. Bonne D. Rodriguez J. Eur. J. Org. Chem. 2018:2417. doi: 10.1002/ejoc.201800078. - DOI