Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 23;9(39):22685-22694.
doi: 10.1039/c9ra03642c. eCollection 2019 Jul 17.

Metal- and photocatalyst-free synthesis of 3-selenylindoles and asymmetric diarylselenides promoted by visible light

Affiliations

Metal- and photocatalyst-free synthesis of 3-selenylindoles and asymmetric diarylselenides promoted by visible light

Ignacio D Lemir et al. RSC Adv. .

Abstract

A novel and sustainable procedure was developed for the synthesis of 3-selenylindoles employing diorganyl diselenides and indoles or electron-rich arenes as starting materials. Visible blue light was used to promote the reaction without employing transition metal complexes or organic photocatalysts as sensitizers. Additives such as strong oxidants or bases were not required. Moreover, ethanol was employed as a benign solvent under mild reaction conditions. Through this easy and eco-friendly approach, several 3-selenylindoles and a number of asymmetric diarylselenides were obtained in good to excellent isolated yields.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Synthesis of 3-chalcogenylindole employing visible light.
Scheme 2
Scheme 2. Synthesis of 3-selenylindoles using visible light.a,b aReaction conditions: 1 (0.15 mmol) and 2 (0.5 equiv.) in ethanol (2 mL) irradiated for 18 h with 3 W blue LED (467 nm) at room temperature under air atmosphere. bIsolated yields. cReaction irradiated for 36 h.
Scheme 3
Scheme 3. Photoinduced arylselenation of electron-rich arenes.a,b aReaction conditions: 4 (0.15 mmol) and 2a (0.5 equiv.) in ethanol (2 mL) irradiated for 18 h with 3 W blue LED (467 nm) at room temperature under air atmosphere. bIsolated yields. cReaction performed with 1 equiv. of 2a, irradiated for 36 h.
Fig. 1
Fig. 1. Absorption spectra of diselenides (0.06 mM) and indole (0.06 mM) in ethanol, and blue LED emission. Inset: zoom from 360 to 440 nm spectrum zone.
Fig. 2
Fig. 2. Profile of switching on–off experiment by following indole conversion along light on–off periods of time.
Scheme 4
Scheme 4. Control reactions.
Scheme 5
Scheme 5. Proposed mechanisms for the synthesis of selenium compounds.

Similar articles

Cited by

References

    1. Mugesh G. du Mont W.-W. Sies H. Chem. Rev. 2001;101:2125. doi: 10.1021/cr000426w. - DOI - PubMed
    2. Bhabak K. P. Mugesh G. Acc. Chem. Res. 2010;43:1408. doi: 10.1021/ar100059g. - DOI - PubMed
    3. Kumar S. Yan J. Poon J.-f. Singh V. P. Lu X. Ott M. K. Engman L. Kumar S. Angew. Chem., Int. Ed. 2016;55:3729. doi: 10.1002/anie.201510947. - DOI - PubMed
    4. Lenardão E. J., Santi C. and Sancineto L., in Organoselenium Compounds, Springer, 2018, p. 99
    5. Nogueira C. W. Zeni G. Rocha J. B. T. Chem. Rev. 2004;104:6255. doi: 10.1021/cr0406559. - DOI - PubMed
    1. Manjare S. T. Kim Y. Churchill D. G. Acc. Chem. Res. 2014;47:2985. doi: 10.1021/ar500187v. - DOI - PubMed
    2. Rampon D. S. Rodembusch F. S. Schneider J. M. F. M. Bechto l. H. Gonçalves P. F. B. Merlo A. A. Schneider P. H. J. Mater. Chem. 2010;20:715. doi: 10.1039/B917366H. - DOI
    3. Goswami S. Hazra A. Chakrabarty R. Fun H.-K. Org. Lett. 2009;11:4350. doi: 10.1021/ol901737s. - DOI - PubMed
    4. Tang B. Xing Y. Li P. Zhang N. Yu F. Yang G. J. Am. Chem. Soc. 2007;129:11666. doi: 10.1021/ja072572q. - DOI - PubMed
    1. Back T. G., in Organoselenium Chemistry: A Practical Approach, Oxford University Press, Oxford, 1999
    2. Freudendahl D. M. Santoro S. Shahzad S. A. Santi C. Wirth T. Angew. Chem., Int. Ed. 2009;48:8409. doi: 10.1002/anie.200903893. - DOI - PubMed
    3. Mukherjee A. J. Zade S. S. Singh H. B. Sunoj R. B. Chem. Rev. 2010;110:4357. doi: 10.1021/cr900352j. - DOI - PubMed
    4. Godoi M. Paixão M. W. Braga A. L. Dalton Trans. 2011;40:11347. doi: 10.1039/C1DT11022E. - DOI - PubMed
    5. Santoro S. Azeredo J. B. Nascimento V. Sancineto L. Braga A. L. Santi C. RSC Adv. 2014;4:31521. doi: 10.1039/C4RA04493B. - DOI
    1. Kaushik N. K. Kaushik N. Attri P. Kumar N. Kim C. H. Verma A. K. Choi E. H. Molecules. 2013;18:6620. doi: 10.3390/molecules18066620. - DOI - PMC - PubMed
    2. Rodrigues de Sá Alves F. Barreiro E. J. Manssour-Fraga C. A. Mini-Rev. Med. Chem. 2009;9:782. doi: 10.2174/138955709788452649. - DOI - PubMed
    1. Singh T. P. Singh O. M. Mini-Rev. Med. Chem. 2018;18:9. doi: 10.2174/1389557517666170807124507. - DOI - PubMed
    2. Sharma V. Kumar P. Pathak D. J. Heterocycl. Chem. 2010;47:491.
    3. Zhang M. Z. Chen Q. Yang G. F. Eur. J. Med. Chem. 2015;89:421. doi: 10.1016/j.ejmech.2014.10.065. - DOI - PMC - PubMed