Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 3;9(24):13749-13756.
doi: 10.1039/c9ra01529a. eCollection 2019 Apr 30.

Lanthanide complexes combined with chiral salen ligands: application in the enantioselective epoxidation reaction of α,β-unsaturated ketones

Affiliations

Lanthanide complexes combined with chiral salen ligands: application in the enantioselective epoxidation reaction of α,β-unsaturated ketones

Xuexiu Xia et al. RSC Adv. .

Abstract

Readily available lanthanide amides Ln[N(SiMe3)2]3 (Ln = Nd (1), Sm (2), Eu (3), Yb (4), La (5)), combined with chiral salen ligands H2La ((S,S)-N,N'-di-(3,5-disubstituted-salicylidene)-1,2-cyclohexanediamine) and H2Lb ((S,S)-N,N'-di-(3,5-disubstituted-salicylidene)-1,2-diphenyl-1,2-ethanediamine) were employed in the enantioselective epoxidation of α,β-unsaturated ketones. It was found that the salen-La complex shows the highest efficiency and enantioselectivity. A relatively broad scope of α,β-unsaturated ketones was investigated, and excellent yields (up to 99%) and moderate to good enantioselectivities (37-87%) of the target molecules were achieved.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Chart 1
Chart 1. Epoxidation of α,β-unsaturated ketones catalyzed by complex 5a. aReactions were performed with the substrate (0.3 mmol), TBHP (0.36 mmol) in 1 mL CH3CN at −20 °C for 10 h; isolated yield; ee value were determined by chiral HPLC analysis. b15 h. c48 h.
Scheme 1
Scheme 1. The preparation of complex 8.
Scheme 2
Scheme 2. The synthesis and the molecular structure of compound 7e.

Similar articles

References

    1. Cozzi P. G. Chem. Soc. Rev. 2004;33:410–421. doi: 10.1039/B307853C. - DOI - PubMed
    1. Kitamura M. Suga S. Kawai K. Noyori R. J. Am. Chem. Soc. 1986;108:6071–6072. doi: 10.1021/ja00279a083. - DOI - PubMed
    2. Noyori R. Kitamura M. Angew. Chem., Int. Ed. Engl. 1991;30:49–69. doi: 10.1002/anie.199100491. - DOI
    3. Quirmbach M. Kless A. Holz J. Tararov B. Börner A. Tetrahedron: Asymmetry. 1999;10:1803–1811. doi: 10.1016/S0957-4166(99)00165-2. - DOI
    4. Kless A. Kadyrov R. Börner A. Holz J. Kagan H. B. Tetrahedron Lett. 1995;36:4601–4602. doi: 10.1016/0040-4039(95)00844-3. - DOI
    5. Dimauro E. F. Kozlowski M. C. Org. Lett. 2001;3(19):3053–3056. doi: 10.1021/ol016535u. - DOI - PubMed
    1. DiMauro E. F. Kozlowski M. C. J. Am. Chem. Soc. 2002;124:12668–12670. doi: 10.1021/ja026498h. - DOI - PubMed
    2. Garcfa C. LaRochelle L. K. Walsh P. J. J. Am. Chem. Soc. 2002;124:10970–10971. doi: 10.1021/ja026568k. - DOI - PubMed
    3. Belokon Y. N. Green B. Ikonnikov N. S. North M. Tararov V. I. Tetrahedron Lett. 1999;40:8147–8149. doi: 10.1016/S0040-4039(99)01677-9. - DOI
    4. Yabu K. Masumoto S. Kanai M. Curran D. P. Shibasaki M. Tetrahedron Lett. 2002;43:2923–2925. doi: 10.1016/S0040-4039(02)00451-3. - DOI
    5. Masumoto S. Suzuki M. Kanai M. Shibasaki M. Tetrahedron Lett. 2002;43:8647–8650. doi: 10.1016/S0040-4039(02)02135-4. - DOI
    6. Tian S. K. Deng L. J. Am. Chem. Soc. 2001;123:6195–6197. doi: 10.1021/ja010690m. - DOI - PubMed
    7. Deng H. Snapper M. P. Hoveyda A. H. Angew. Chem., Int. Ed. 2002;41:1009–1011. doi: 10.1002/1521-3773(20020315)41:6<1009::AID-ANIE1009>3.0.CO;2-F. - DOI - PubMed
    8. Chen F. X. Feng X. M. Qin B. Zhang G. L. Jiang Y. Z. Org. Lett. 2003;5(6):949–952. doi: 10.1021/ol034158a. - DOI - PubMed
    1. Evans D. A. Burgey C. S. Paras N. A. Vojkovsky T. Tregay S. W. J. Am. Chem. Soc. 1998;120:5824–5825. doi: 10.1021/ja980549m. - DOI
    2. Evans D. A. Tregay S. W. Burgey C. S. Paras N. A. Vojkovsky T. J. Am. Chem. Soc. 2000;122:7936–7943. doi: 10.1021/ja000913t. - DOI
    3. Yuan Y. Zhang X. Ding K. Angew. Chem., Int. Ed. 2003;42:5478–5480. doi: 10.1002/anie.200352535. - DOI - PubMed
    4. Evans D. A. Wu J. J. Am. Chem. Soc. 2005;127:8006–8007. doi: 10.1021/ja0522130. - DOI - PubMed
    5. Huston G. E. Dave A. H. Rawal V. H. Org. Lett. 2007;9:3869–3872. doi: 10.1021/ol071342d. - DOI - PubMed
    1. Denes F. D. Perez-Luna A. Chemla F. Chem. Rev. 2010;110:2366–2368. doi: 10.1021/cr800420x. - DOI - PubMed
    2. Corkey B. K. Toste F. D. J. Am. Chem. Soc. 2005;125:17168–17169. doi: 10.1021/ja055059q. - DOI - PubMed
    3. Yang T. Ferrali A. Sladojevich F. Campbell L. Dixon D. J. Am. Chem. Soc. 2009;131:9140–9141. doi: 10.1021/ja9004859. - DOI - PubMed
    4. Matsuzawa A. Mashiko T. Kumagai N. Shibasaki M. Angew. Chem., Int. Ed. 2011;50:7616–7618. doi: 10.1002/anie.201102114. - DOI - PubMed
    5. Shaw S. White J. D. J. Am. Chem. Soc. 2014;136:13578–13581. doi: 10.1021/ja507853f. - DOI - PubMed