Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 3;9(30):17391-17398.
doi: 10.1039/c9ra01909j. eCollection 2019 May 29.

Copper-catalyzed intramolecular cross dehydrogenative coupling approach to coumestans from 2'-hydroxyl-3-arylcoumarins

Affiliations

Copper-catalyzed intramolecular cross dehydrogenative coupling approach to coumestans from 2'-hydroxyl-3-arylcoumarins

Xianheng Song et al. RSC Adv. .

Abstract

A copper-catalyzed intramolecular cross dehydrogenative C-O coupling reaction of 2'-hydroxyl-3-arylcoumarins was developed. This protocol provided a facile and efficient strategy for the construction of natural coumestans and derivatives in moderate to high yields. This transformation exhibited good functional group compatibility and was amenable to substrates with free phenolic hydroxyl groups.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Strategies to coumestans.
Scheme 2
Scheme 2. Retrosynthetic analysis of coumestans 1.
Fig. 1
Fig. 1. X-ray single crystal structure of 1e.
Scheme 3
Scheme 3. Synthesis of coumestrol (1s) and 9-methoxy-coumestrol (1t).
Scheme 4
Scheme 4. Synthesis of 8,9-dimethoxy-coumestrol (1u), medicagol (1v) and flemichapparin C (1w).
Scheme 5
Scheme 5. Control experiments.
Scheme 6
Scheme 6. Possible mechanistic pathway.

Similar articles

Cited by

References

    1. Bickoff E. M. Lyman R. L. Livingston A. L. Booth A. N. J. Am. Chem. Soc. 1958;80:3969–3971. doi: 10.1021/ja01548a043. - DOI
    2. Xi G.-L. Liu Z.-Q. J. Agric. Food Chem. 2014;62:5636–5642. doi: 10.1021/jf500013v. - DOI - PubMed
    3. Tuskaev V. A. Pharm. Chem. J. 2013;47:1–11. doi: 10.1007/s11094-013-0886-5. - DOI
    4. Zhang W. Lun S. Wang S. Jiang X. Yang F. Tang J. Manson A. L. Earl A. M. Gunosewoyo H. Bishai W. R. Yu L.-F. J. Med. Chem. 2018;61:791–803. doi: 10.1021/acs.jmedchem.7b01319. - DOI - PubMed
    1. Xia Y. Chen J. Cao Y. Xu C. Li R. Pan Y. Chen X. Eur. J. Pharmacol. 2013;714:105–111. doi: 10.1016/j.ejphar.2013.06.012. - DOI - PubMed
    2. Lim S. Jang H.-J. Park E. H. Kim J. K. Kim J.-M. Kim E.-K. Yea K. Kim Y.-H. Lee-Kwon W. Ryu S. H. Suh P.-G. J. Cell. Biochem. 2012;113:3436–3445. doi: 10.1002/jcb.24220. - DOI - PubMed
    3. Li L. Deng X. Zhang L. Shu P. Qin M. Fitoterapia. 2011;82:615–619. doi: 10.1016/j.fitote.2011.01.019. - DOI - PubMed
    4. Chen Y. Wei X. Xie H. Deng H. J. Nat. Prod. 2008;71:929–932. doi: 10.1021/np800016e. - DOI - PubMed
    5. Xu M.-Y. Kim Y.-S. Food Chem. Toxicol. 2014;74:311–319. doi: 10.1016/j.fct.2014.10.023. - DOI - PubMed
    6. Nehybova T. Smarda J. Daniel L. Brezovsky J. Benes P. J. Steroid Biochem. Mol. Biol. 2015;152:76–83. doi: 10.1016/j.jsbmb.2015.04.019. - DOI - PubMed
    7. DaSilva A. J. M. Melo P. A. Silva N. M. V. Brito F. V. Buarque C. D. de Souza D. V. Rodrigues V. P. Pocas E. S. C. Noel F. Albuquerque E. X. Costa P. R. R. Bioorg. Med. Chem. Lett. 2001;11:283–286. doi: 10.1016/S0960-894X(00)00621-1. - DOI - PubMed
    1. Mackey K. Pardo L. M. Prendergast A. M. Nolan M.-T. Bateman L. M. McGlacken G. P. Org. Lett. 2016;18:2540–2543. doi: 10.1021/acs.orglett.6b00751. - DOI - PubMed
    2. Neog K. Borah A. Gogoi P. J. Org. Chem. 2016;81:11971–11977. doi: 10.1021/acs.joc.6b01966. - DOI - PubMed
    3. Kapdi A. R. Karbelkar A. Naik M. Pednekar S. Fischer C. Schulzkec C. Tromp M. RSC Adv. 2013;3:20905–20912. doi: 10.1039/C3RA43821J. - DOI
    4. Tang L. Pang Y. Yan Q. Shi L. Huang J. Du Y. Zhao K. J. Org. Chem. 2011;76:2744–2752. doi: 10.1021/jo2000644. - DOI - PubMed
    5. Kshirsagar U. A. Parnes R. Goldshtein H. Ofir R. Zarivach R. Pappo D. Chem.–Eur. J. 2013;19:13575–13583. doi: 10.1002/chem.201300389. - DOI - PubMed
    6. Liu J. Liu Y. Du W. Dong Y. Liu J. Wang M. J. Org. Chem. 2013;78:7293–7297. doi: 10.1021/jo400984h. - DOI - PubMed
    7. Zhang J. Qiu J. Xiao C. Yu L. Yang F. Tang J. Eur. J. Org. Chem. 2016:3380–3385. doi: 10.1002/ejoc.201600122. - DOI
    8. Yao T. Yue D. Larock R. C. J. Org. Chem. 2005;70:9985–9989. doi: 10.1021/jo0517038. - DOI - PubMed
    9. Nolan M. T. Pardo L. M. Prendergast A. M. McGlacken G. P. J. Org. Chem. 2015;80:10904–10913. doi: 10.1021/acs.joc.5b02027. - DOI - PubMed
    10. Cheng C. Chen W. Xu B. Xu M.-H. Org. Chem. Front. 2016;3:1111–1115. doi: 10.1039/C6QO00270F. - DOI
    11. Kurosawa K. Nogami K. Bull. Chem. Soc. Jpn. 1976;49:1955–1957. doi: 10.1246/bcsj.49.1955. - DOI
    12. Mali R. S. Tilve S. G. Synth. Commun. 1990;20:1781–1791. doi: 10.1080/00397919008053103. - DOI
    13. Naik M. Kamat V. P. Tilve S. G. Tetrahedron. 2017;73:5528–5536. doi: 10.1016/j.tet.2017.07.057. - DOI
    14. Chang C.-F. Yang L.-Y. Chang S.-W. Fang Y.-T. Lee Y.-J. Tetrahedron. 2008;64:3661–3666. doi: 10.1016/j.tet.2008.02.031. - DOI
    15. Gong D. H. Li C. Z. Yuan C. Y. Chin. J. Chem. 2001;19:522–527. doi: 10.1002/cjoc.20010190517. - DOI
    16. Pandit S. B. Gadre S. Y. Synth. Commun. 1988;18:157–166. doi: 10.1080/00397918808077340. - DOI
    1. Li C. C. Xie Z. X. Zhang Y. D. Chen J. H. Yang Z. J. Org. Chem. 2003;68:8500–8504. doi: 10.1021/jo030228f. - DOI - PubMed
    2. Yao T. Yue D. Larock R. C. J. Org. Chem. 2005;70:9985–9989. doi: 10.1021/jo0517038. - DOI - PubMed
    3. Hiroya K. Suzuki N. Yasuhara A. Egawa Y. Kasano A. Sakamoto T. J. Chem. Soc., Perkin Trans. 1. 2000:4339–4346. doi: 10.1039/B006623K. - DOI
    1. Pahari P. Rohr J. J. Org. Chem. 2009;74:2750–2754. doi: 10.1021/jo8025884. - DOI - PMC - PubMed
    2. Kraus G. A. Zhang N. J. Org. Chem. 2000;65:5644–5646. doi: 10.1021/jo0004198. - DOI - PubMed
    3. Al-Maharik N. Botting N. P. Tetrahedron. 2004;60:1637–1642. doi: 10.1016/j.tet.2003.11.089. - DOI