Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 3;10(48):28536-28540.
doi: 10.1039/d0ra05254j.

A guanosine-based 2-formylphenylborate ester hydrogel with high selectivity to K+ ions

Affiliations

A guanosine-based 2-formylphenylborate ester hydrogel with high selectivity to K+ ions

Hongwei Qiao et al. RSC Adv. .

Abstract

Guanosine-based supramolecular hydrogels are particularly of interest for biomaterial and biomedical purposes, as they are generally biocompatible and stimuli-responsive. We found a strong and long-life transparent hydrogel made by mixing guanosine (G) with 1 equiv. of 2-formylbenzeneboronic acid (2FPB) and KOH. Alkali cations can assist the stacking of individual G-quartet to give extended nanowires, but only K+ ion induces the formation of a stable and self-supporting network hydrogel for a couple of months. Data from variable temperature NMR indicated that guanosine 2-formylbenzeneborate ester and G are the key components of the self-assembly. Further, G-2FPB-K+ hydrogel solution can induce berberine (BBR) fluorescence, showing high selectivity to K+ ion and anti-ion interference capability. A good linear relationship between fluorescent intensity and K+ concentration allowed us to directly detect K+ levels in human blood serum.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1. Self-assembled hydrogel G-2FPB-K+ formed by guanosine (1) and 2-formylbenzeneboronic acid (2) in the presence of K+ ions.
Fig. 2
Fig. 2. (a) PXRD and (b) CD spectroscopy of 50 mM G-2FPB-K+ hydrogel (1, 2, and KOH 50 mM each). (c) VT 1H NMR (left) and VT 11B NMR (right) spectra of a 50 mM G-2FPB hydrogel in D2O. BF3·O(C2H5)2 was used as reference to calibrate the chemical shift in VT 11B NMR. 2,2,3,3-(d4)-3-(Trimethylsilyl)propionic acid sodium salt (0.31 mM) was used to quantify the concentration of different peaks in VT 1H NMR. (d) The variations of content of 1 and 3 at different temperatures. The result was calculated according to the data from VT 1H NMR and 11B NMR.
Fig. 3
Fig. 3. Images and measurements of a G-2FPB-K+ hydrogel. TEM micrograph, (a) 10 mM and (b) 5 mM. (c) AFM topographic image, 5 mM. The inset shows the profiles delimited by the red lines in the main panels. (d) Dynamic frequency sweeps and (e) oscillatory stress sweeps of a 50 mM G-2FPB-K+ hydrogel.
Fig. 4
Fig. 4. (a) Schematic illustration of fluorescence of G-2FPB-Na+–K+ system in the presence of BBR. (b) The selectivity of fluorescence enhancement of BBR in G-2FPB-M+ solution for K+. (c) Selectivity of the 100 mM G-2FPB-Na+ solution for the detection of K+ against the interference ions in the PB buffer containing 31 μM BBR. Black bar: mono/divalent metal ions. Red bar: K+ (0.2 mM, 1 equiv.) and mono/divalent metal ions in the G-2FPB-Na+ solution in pH 7.4 PB buffer. Various amounts of different valents cations: (1) 100 equiv.: Li+, Na+, Cs+; (2) 10 equiv.: NH4+, Mg2+, (3) 1 equiv.: Rb+, Ca2+, Zn2+, Cu2+, Mn2+, Fe3+. λex = 371 nm, λem = 523 nm. (d) The corresponding plot of fluorescence intensity (523 nm) vs. the concentration of KCl.

Similar articles

Cited by

References

    1. Buerkle L. E. Rowan S. J. Chem. Soc. Rev. 2012;41:6089–6102. doi: 10.1039/C2CS35106D. - DOI - PubMed
    2. Babu S. S. Praveen V. K. Ajayaghosh A. Chem. Rev. 2014;114:1973–2129. doi: 10.1021/cr400195e. - DOI - PubMed
    3. Weiss R. G. J. Am. Chem. Soc. 2014;136:7519–7530. doi: 10.1021/ja503363v. - DOI - PubMed
    4. Cheetham A. G. Chakroun R. W. Ma W. Cui H. Chem. Soc. Rev. 2017;46:6638–6663. doi: 10.1039/C7CS00521K. - DOI - PMC - PubMed
    1. Peters G. M. Davis J. T. Chem. Soc. Rev. 2016;45:3188–3206. doi: 10.1039/C6CS00183A. - DOI - PubMed
    2. Bhattacharyya T. Saha P. Dash J. ACS Omega. 2018;3:2230–2241. doi: 10.1021/acsomega.7b02039. - DOI - PMC - PubMed
    3. Huppert J. L. Chem. Soc. Rev. 2008;37:1375–1384. doi: 10.1039/B702491F. - DOI - PubMed
    4. Davis J. T. Spada G. P. Chem. Soc. Rev. 2007;36:296–313. doi: 10.1039/B600282J. - DOI - PubMed
    1. Gellert M. Lipsett M. N. Davies D. R. Proc. Natl. Acad. Sci. U. S. A. 1962;48:2013–2018. doi: 10.1073/pnas.48.12.2013. - DOI - PMC - PubMed
    1. Das R. N. Kumar Y. P. Pagoti S. Patil A. J. Dash J. Chem.–Eur. J. 2012;18:6008–6014. doi: 10.1002/chem.201103814. - DOI - PubMed
    2. Adhikari B. Shah A. Kraatz H. B. J. Mater. Chem. B. 2014;2:4802–4810. doi: 10.1039/C4TB00702F. - DOI - PubMed
    3. Li Z. Buerkle L. E. Orseno M. R. Streletzky K. A. Seifert S. Jamieson A. M. Rowan S. J. Langmuir. 2010;26:10093–10101. doi: 10.1021/la100211y. - DOI - PubMed
    1. Peters G. M. Skala L. P. Plank T. N. Hyman B. J. Reddy G. N. M. Marsh A. Brown S. P. Davis J. T. J. Am. Chem. Soc. 2014;136:12596–12599. doi: 10.1021/ja507506c. - DOI - PubMed
    2. Peters G. M. Skala L. P. Davis J. T. J. Am. Chem. Soc. 2016;138:134–139. doi: 10.1021/jacs.5b08769. - DOI - PubMed
    3. Plank T. N. Davis J. T. Chem. Commun. 2016;52:5037–5040. doi: 10.1039/C6CC01494A. - DOI - PubMed
    4. Plank T. N. Skala L. P. Davis J. T. Chem. Commun. 2017;53:6235–6238. doi: 10.1039/C7CC03118A. - DOI - PubMed
    5. Pieraccini S. Campitiello M. Carducci F. Davis J. T. Mariani P. Masiero S. Org. Biomol. Chem. 2019;17:2759–2769. doi: 10.1039/C9OB00193J. - DOI - PubMed