Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 3;10(48):28585-28594.
doi: 10.1039/d0ra05715k.

Selective hydrogenation of nitroaromatics to N-arylhydroxylamines in a micropacked bed reactor with passivated catalyst

Affiliations

Selective hydrogenation of nitroaromatics to N-arylhydroxylamines in a micropacked bed reactor with passivated catalyst

Feng Xu et al. RSC Adv. .

Abstract

In this contribution, a protocol was established for the selective catalytic hydrogenation of nitroarenes to the corresponding N-arylhydroxylamines. The reduction of 1-(4-chlorophenyl)-3-((2-nitrobenzyl)oxy)-1H-pyrazole, an intermediate in the synthesis of the antifungal reagent pyraclostrobin that includes carbon-chlorine bonds, benzyl groups, carbon-carbon double bonds and other structures that are easily reduced, was chosen as the model reaction for catalyst evaluation and condition optimization. Extensive passivant evaluation showed that RANEY®-nickel treated with ammonia/DMSO (1 : 10, v/v) afforded the optimal result, especially with a particle size of 400-500 mesh. To combine the modified catalyst with continuous-flow reaction technology, the reaction was conducted at room temperature, rendering the desired product with a conversion rate of 99.4% and a selectivity of 99.8%. The regeneration of catalytic activity was also studied, and an in-column strategy was developed by pumping the passivate liquid overnight. Finally, the generality of the method was explored, and 7 substrates were developed, most of which showed a good conversion rate and selectivity, indicating that the method has a certain degree of generality.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. General scheme for the catalytic hydrogenation of nitroarene.
Scheme 2
Scheme 2. Catalytic hydrogenation for NA-1: the synthesis of a key intermediate for pyraclostrobin.
Fig. 1
Fig. 1. FT-IR spectra for different catalysts.
Fig. 2
Fig. 2. SEM and TEM spectra for different catalysts: TEM for DA80 (a), DA200 (b), DA400 (c); SEM for DA80 (d), DA200 (e), DA400 (f).
Fig. 3
Fig. 3. Kinetic profile of the batch reaction.
Fig. 4
Fig. 4. Result for reaction performance and catalyst regeneration.
Scheme 3
Scheme 3. Conformed mechanism of catalytic hydrogenation of pyraclostrobin intermediate.
Fig. 5
Fig. 5. The setup scheme for the micropacked bed continuous reactor.

Similar articles

Cited by

References

    1. McGill A. D. Zhang W. Wittbrodt J. Wang J. Schlegel H. B. Wang P. G. Bioorg. Med. Chem. 2000;8:405–412. doi: 10.1016/S0968-0896(99)00300-4. - DOI - PubMed
    2. Yadav J. S. Reddy B. V. S. Sreedhar P. Adv. Synth. Catal. 2003;345:564–567. doi: 10.1002/adsc.200202209. - DOI
    3. El-Faham A. Albericio F. Eur. J. Org. Chem. 2009;2009:1499–1501. doi: 10.1002/ejoc.200801179. - DOI
    4. Sabir S. Kumar G. Jat J. L. Org. Biomol. Chem. 2018;16:3314–3327. doi: 10.1039/C8OB00146D. - DOI - PubMed
    1. Orlandi M. Brenna D. Harms R. Jost S. Benaglia M. Org. Process Res. Dev. 2016;22:430–445. doi: 10.1021/acs.oprd.6b00205. - DOI
    2. Goksu H. Sert H. Kilbas B. Sen F. Curr. Org. Chem. 2017;21:794–820. doi: 10.2174/1385272820666160525123907. - DOI
    1. Karwa S. L. Rajadhyaksha R. A. Ind. Eng. Chem. Res. 1987;26:1746–1750. doi: 10.1021/ie00069a005. - DOI
    2. Studer M. Neto S. Blaser H. U. Top. Catal. 2000;13:205–212. doi: 10.1023/A:1009050804228. - DOI
    3. Takenaka Y. Kiyosu T. Choi J.-C. Sakakura T. Yasuda H. Green Chem. 2009;11:1385–1390. doi: 10.1039/B904672K. - DOI
    4. Takenaka Y. Kiyosu T. Choi J.-C. Sakakura T. Yasuda H. ChemSusChem. 2010;3:1166–1168. doi: 10.1002/cssc.201000137. - DOI - PubMed
    5. Jawale D. V. Gravel E. Boudet C. Shah N. Geertsen V. Li H. Namboothiri I. N. N. Doris E. Chem. Commun. 2015;51:1739–1742. doi: 10.1039/C4CC09192B. - DOI - PubMed
    1. Gubica T. Stroka J. Temeriusz A. J. Phys. Org. Chem. 2007;20:375–383. doi: 10.1002/poc.1149. - DOI
    2. Chen Y. Xiong L. Wang W. Zhang X. Yu H. Front. Environ. Sci. Eng. 2015;9:897–904. doi: 10.1007/s11783-015-0782-1. - DOI
    1. Cantillo D. Moghaddam M. M. Kappe C. O. J. Org. Chem. 2013;78:4530–4542. doi: 10.1021/jo400556g. - DOI - PubMed
    2. Plutschack M. B. Pieber B. Gilmore K. Seeberger P. H. Chem. Rev. 2017;117:11796–11893. doi: 10.1021/acs.chemrev.7b00183. - DOI - PubMed
    3. Britton J. Majumdar S. Weiss G. A. Chem. Soc. Rev. 2018;47:5891–5918. doi: 10.1039/C7CS00906B. - DOI - PMC - PubMed
    4. Akwi F. M. Watts P. Chem. Commun. 2018;54:13894–13928. doi: 10.1039/C8CC07427E. - DOI - PubMed