Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 4;10(48):28720-28724.
doi: 10.1039/d0ra05687a. eCollection 2020 Aug 3.

Dearomative [3 + 2] cycloaddition reaction of nitrobenzothiophenes with nonstabilized azomethine ylides

Affiliations

Dearomative [3 + 2] cycloaddition reaction of nitrobenzothiophenes with nonstabilized azomethine ylides

Kai-Kai Wang et al. RSC Adv. .

Abstract

A highly diastereoselective dearomative [3 + 2] 1,3-dipolar cycloaddition reaction of nitrobenzothiophenes with an in situ-generated nonstabilized azomethine ylides has been developed. The transformation provides a series of functionalized fused tricyclic benzo[4,5]thieno[2,3-c]pyrroles in good yields (up to 92%) under mild reaction conditions. In addition, a gram-scale experiment and the synthetic transformation of the cycloadduct further highlighted the synthetic utility. The relative configurations of the typical products were clearly confirmed by X-ray crystallography.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Dearomative cycloaddition reaction of electron-deficient heteroarenes with nonstabilized azomethine ylides.
Scheme 2
Scheme 2. Dearomative cycloaddition reaction of 2-nitrobenzothiophene and 2-nitrobenzofuran with nonstabilized azomethine ylide.
Scheme 3
Scheme 3. Scaled-up version of synthesis of fused tricyclic benzo[4,5]thieno[2,3-c]pyrrole.
Scheme 4
Scheme 4. Transformations of product 3a.

Similar articles

Cited by

References

    1. For reviews, see:

    2. Zhuo C.-X. Zhang W. You S.-L. Catalytic Asymmetric Dearomatization Reactions. Angew. Chem., Int. Ed. 2012;51:12662. doi: 10.1002/anie.201204822. - DOI - PubMed
    3. Wertjes W. C. Southgate E. H. Sarlah D. Recent advances in chemical dearomatization of nonactivated arenes. Chem. Soc. Rev. 2018;47:7996. doi: 10.1039/C8CS00389K. - DOI - PubMed
    4. Li C. Ragab S. S. Liu G. Tang W. Enantioselective formation of quaternary carbon stereocenters in natural product synthesis: a recent update. Nat. Prod. Rep. 2020;37:276. doi: 10.1039/C9NP00039A. - DOI - PubMed
    5. Zheng C. You S.-L. Catalytic asymmetric dearomatization (CADA) reaction-enabled total synthesis of indole-based natural products. Nat. Prod. Rep. 2019;36:1589. doi: 10.1039/C8NP00098K. - DOI - PubMed
    1. For selected examples, see:

    2. Liu K. Song W. Deng Y. Yang H. Song C. Abdelilah T. Wang S. Cong H. Tang S. Lei A. Electrooxidation enables highly regioselective dearomative annulation of indole and benzofuran derivatives. Nat. Commun. 2020;11:3. doi: 10.1038/s41467-019-13829-4. - DOI - PMC - PubMed
    3. Zhang J.-Q. Tong F. Sun B.-B. Fan W.-T. Chen J.-B. Hu D. Wang X.-W. Pd-Catalyzed Asymmetric Dearomative Cycloaddition for Construction of Optically Active Pyrroloindoline and Cyclopentaindoline Derivatives: Access to 3a-Aminopyrroloindolines. J. Org. Chem. 2018;83:2882. doi: 10.1021/acs.joc.8b00046. - DOI - PubMed
    4. Birbaum L. Gillard L. Gerard H. Oulyadi H. Vincent G. Moreau X. De Paolis M. Chataigner I. Dearomatization of 3-Nitroindoles with Highly gamma-Functionalized Allenoates in Formal (3 + 2) Cycloadditions. Chem.–Eur. J. 2019;25:13688. doi: 10.1002/chem.201903455. - DOI - PubMed
    5. Suo J.-J. Du J. Jiang Y.-J. Chen D. Ding C.-H. Hou X.-L. Diastereo- and enantioselective palladium-catalyzed dearomative 4 + 2 cycloaddition of 3-nitroindoles. Chin. Chem. Lett. 2019;30:1512. doi: 10.1016/j.cclet.2019.04.028. - DOI - PubMed
    6. Santhini P. V. Babu S. A. Krishnan A. R. Suresh E. John J. Heteroannulation of 3-Nitroindoles and 3-Nitrobenzo[b]thiophenes: A Multicomponent Approach toward Pyrrole-Fused Heterocycles. Org. Lett. 2017;19:2458. doi: 10.1021/acs.orglett.7b01147. - DOI - PubMed
    7. Gee Y. S. Rivinoja D. J. Wales S. M. Gardiner M. G. Ryan J. H. Hyland C. J. T. Pd-Catalyzed Dearomative 3 + 2 Cycloaddition of 3-Nitroindoles with 2-Vinylcyclopropane-1,1-dicarboxylates. J. Org. Chem. 2017;82:13517. doi: 10.1021/acs.joc.7b02624. - DOI - PubMed
    8. Yue D.-F. Zhao J.-R. Chen X.-Z. Zhou Y. Zhang X.-M. Xu X.-Y. Yuan W.-C. Multiple Hydrogen-Bonding Bifunctional Thiourea-Catalyzed Asymmetric Dearomative 4 + 2 Annulation of 3-Nitroindoles: Highly Enantioselective Access to Hydrocarbazole Skeletons. Org. Lett. 2017;19:4508. doi: 10.1021/acs.orglett.7b02068. - DOI - PubMed
    9. Zhao X. Liu X. Mei H. Guo J. Lin L. Feng X. Asymmetric Dearomatization of Indoles through a Michael/Friedel-Crafts-Type Cascade To Construct Polycyclic Spiroindolines. Angew. Chem., Int. Ed. 2015;54:4032. doi: 10.1002/anie.201410814. - DOI - PubMed
    10. Zhang Y.-C. Zhao J.-J. Jiang F. Sun S.-B. Shi F. Organocatalytic Asymmetric Arylative Dearomatization of 2,3-Disubstituted Indoles Enabled by Tandem Reactions. Angew. Chem., Int. Ed. 2014;53:13912. doi: 10.1002/anie.201408551. - DOI - PubMed
    11. Shao W. Li H. Liu C. Liu C.-J. You S.-L. Copper-Catalyzed Intermolecular Asymmetric Propargylic Dearomatization of Indoles. Angew. Chem., Int. Ed. 2015;54:7684. doi: 10.1002/anie.201503042. - DOI - PubMed
    12. Liu C. Yin Q. Dai L.-X. You S.-L. Synthesis of pyrroloindolines and furoindolines via cascade dearomatization of indole derivatives with carbenium ion. Chem. Commun. 2015;51:5971. doi: 10.1039/C5CC00780A. - DOI - PubMed
    1. Bandini M. Eichholzer A. Catalytic Functionalization of Indoles in a New Dimension. Angew. Chem., Int. Ed. 2009;48:9608. doi: 10.1002/anie.200901843. - DOI - PubMed
    2. Ball-Jones N. R. Badillo J. J. Franz A. K. Strategies for the enantioselective synthesis of spirooxindoles. Org. Biomol. Chem. 2012;10:5165. doi: 10.1039/C2OB25184A. - DOI - PubMed
    3. Ling J. Mara D. Roure B. Laugeois M. Vitale M. R. Copper(i)-Catalyzed Dearomative (3 + 2) Cycloaddition of 3-Nitroindoles with Propargylic Nucleophiles: An Access to Cyclopenta[b]indolines. J. Org. Chem. 2020;85:3838. doi: 10.1021/acs.joc.9b03459. - DOI - PubMed
    1. For selected examples, see:

    2. Zhuo J.-R. Quan B.-X. Zhao J.-Q. Zhang M.-L. Chen Y.-Z. Zhang X.-M. Yuan W.-C. Base-mediated 4 + 2 annulation of electron-deficient nitrobenzoheterocycles and alpha,alpha-dicyanoalkenes in water: Facile access to structurally diverse functionalized dibenzoheterocyclic compounds. Tetrahedron. 2020;76:131115. doi: 10.1016/j.tet.2020.131115. - DOI
    3. Zhou X.-J. Zhao J.-Q. Chen X.-M. Zhuo J.-R. Zhang Y.-P. Chen Y.-Z. Zhang X.-M. Xu X.-Y. Yuan W.-C. Organocatalyzed Asymmetric Dearomative Aza-Michael/Michael Addition Cascade of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes with 2-Aminochalcones. J. Org. Chem. 2019;84:4381. doi: 10.1021/acs.joc.9b00401. - DOI - PubMed
    4. Zhao J.-Q. Yang L. You Y. Wang Z.-H. Xie K.-X. Zhang X.-M. Xu X.-Y. Yuan W.-C. Phosphine-catalyzed dearomative (3 + 2) annulation of 2-nitrobenzofurans and nitrobenzothiophenes with allenoates. Org. Biomol. Chem. 2019;17:5294. doi: 10.1039/C9OB00775J. - DOI - PubMed
    5. Yue D.-F. Zhao J.-Q. Chen Y.-Z. Zhang X.-M. Xu X.-Y. Yuan W.-C. Zinc-Catalyzed Enantioselective Dearomative 3 + 2 Cycloaddition Reaction of 3-Nitrobenzothiophenes and 3-Nitrothieno-2,3-b-yridine with 3-Isothiocyanato Oxindoles. Adv. Synth. Catal. 2018;360:1420. doi: 10.1002/adsc.201701557. - DOI
    6. Wang H. Hu Q. Wang M. Guo C. Enantioselective 4 + 2 Annulation to the Concise Synthesis of Chiral Dihydrocarbazoles. Iscience. 2020;23:100840. doi: 10.1016/j.isci.2020.100840. - DOI - PMC - PubMed
    7. Santhini P. V. Krishnan A. R. Babu S. A. Simethy B. S. Das G. Praveen V. K. Varughese S. John J. One-Pot MCR-Oxidation Approach toward Indole-Fused Heteroacenes. J. Org. Chem. 2017;82:10537. doi: 10.1021/acs.joc.7b02039. - DOI - PubMed
    8. Li Y. Tur F. Nielsen R. P. Jiang H. Jensen F. Jorgensen K. A. Enantioselective Formal 4 + 2 Cycloadditions to 3-Nitroindoles by Trienamine Catalysis: Synthesis of Chiral Dihydrocarbazoles. Angew. Chem., Int. Ed. 2016;55:1020. doi: 10.1002/anie.201509693. - DOI - PubMed
    9. Chen X.-M. Lei C.-W. Yue D.-F. Zhao J.-Q. Wang Z.-H. Zhang X.-M. Xu X.-Y. Yuan W.-C. Organocatalytic Asymmetric Dearomatization of 3-Nitroindoles and 3-Nitrobenzothiophenes via Thiol-Triggered Diastereo- and Enantioselective Double Michael Addition Reaction. Org. Lett. 2019;21:5452. doi: 10.1021/acs.orglett.9b01688. - DOI - PubMed
    10. Cao D. Ying A. Mo H. Chen D. Chen G. Wang Z. Yang J. 4 + 2 Annulation of 3-Nitroindoles with Alkylidene Malononitriles: Entry to Substituted Carbazol-4-amine Derivatives. J. Org. Chem. 2018;83:12568. doi: 10.1021/acs.joc.8b01876. - DOI - PubMed
    1. For selected examples, see:

    2. Wen S.-M. Lin C.-H. Chen C.-C. Wu M.-J. Efficient synthesis of 3-benzoyl Benzo[b]thiophenes and raloxifene via Mercury(ii)-Catalyzed cyclization of 2-alkynylphenyl alkyl sulfoxides. Tetrahedron. 2018;74:2493. doi: 10.1016/j.tet.2018.03.067. - DOI
    3. Noland W. E. Kumar H. V. Reddi Y. Cramer C. J. Novikov A. V. Kim H. Zhu Y. Chin Y. C. Zhou Y. Radakovic P. Uprety A. Xie J. Flick G. C. Diels-Alder/Ene Reactivities of 2-(1'-Cycloalkenyl)thiophenes and 2-(1'-Cycloalkenyl)benzo[b]thiophenes with N-Phenylmaleimides: Role of Cycloalkene Ring Size on Benzothiophene and Dibenzothiophene Product Distributions. J. Org. Chem. 2020;85:5265. doi: 10.1021/acs.joc.9b03363. - DOI - PubMed
    4. Zhang M. Xu H. Peng C. Huang H. Bo S. Liu J. Liu X. Zhen Z. Qiu L. Novel NLO-phores containing dihexyl amino benzo[b]thiophene exhibiting good transparency and enhanced electro-optical activity dagger. RSC Adv. 2014;4:15870. doi: 10.1039/C4RA00883A. - DOI
    5. Viglianisi C. Di Pietro L. Meoni V. Amorati R. Menichetti S. From simple phenols to potent chain-breaking antioxidants by transposition of benzo-1,4-oxathiines to benzo[b]thiophenes. Arkivoc. 2019:65. - PubMed