Asymmetric synthesis of multifunctional aryl allyl ethers by nucleophilic catalysis
- PMID: 35520223
- PMCID: PMC9063376
- DOI: 10.1039/c9ra00155g
Asymmetric synthesis of multifunctional aryl allyl ethers by nucleophilic catalysis
Abstract
Asymmetric allylic substitution of Morita-Baylis-Hillman (MBH) carbonates with less-nucleophilic phenols mediated by nucleophilic amine catalysis was successfully developed. A variety of substituted aryl allyl ethers were afforded with moderate to high yields with excellent enantioselectivities. The chiral MBH alcohol could be easily accessed from the corresponding aryl allyl ether.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures



Similar articles
-
Chiral phosphine-catalyzed asymmetric allylic alkylation of 3-substituted benzofuran-2(3H)-ones or oxindoles with Morita-Baylis-Hillman carbonates.Org Biomol Chem. 2012 Sep 21;10(35):7158-66. doi: 10.1039/c2ob25694k. Epub 2012 Jul 31. Org Biomol Chem. 2012. PMID: 22850663
-
Direct asymmetric allylic alkenylation of N-itaconimides with Morita-Baylis-Hillman carbonates.J Org Chem. 2012 Aug 3;77(15):6600-7. doi: 10.1021/jo3012539. Epub 2012 Jul 26. J Org Chem. 2012. PMID: 22816444
-
Lewis base catalyzed enantioselective allylic hydroxylation of Morita-Baylis-Hillman carbonates with water.J Org Chem. 2011 Aug 19;76(16):6894-900. doi: 10.1021/jo201096e. Epub 2011 Jul 22. J Org Chem. 2011. PMID: 21751799
-
Chiral phosphines in nucleophilic organocatalysis.Beilstein J Org Chem. 2014 Sep 4;10:2089-121. doi: 10.3762/bjoc.10.218. eCollection 2014. Beilstein J Org Chem. 2014. PMID: 25246969 Free PMC article. Review.
-
The Application of Biocatalysis in the Preparation and Resolution of Morita-Baylis-Hillman Adducts and Their Derivatives.Chembiochem. 2022 Apr 5;23(7):e202100527. doi: 10.1002/cbic.202100527. Epub 2021 Dec 6. Chembiochem. 2022. PMID: 34822736 Review.
References
-
-
For selected reviews, see:
- Huang W.-Y. Anwar S. Chen K. Chem. Rec. 2017;17:1. doi: 10.1002/tcr.201600075. - DOI - PubMed
- Basavaiah D. Reddy B. S. Badsara S. S. Chem. Rev. 2010;110:5447. doi: 10.1021/cr900291g. - DOI - PubMed
- Xie P. Huang Y. Org. Biomol. Chem. 2015;13:8578. doi: 10.1039/C5OB00865D. - DOI - PubMed
- Bharadwaj K. C. RSC Adv. 2015;5:75923. doi: 10.1039/C5RA13611C. - DOI
-
-
-
For selected reviews, see:
- Rios R. Catal. Sci. Technol. 2012;2:267. doi: 10.1039/C1CY00387A. - DOI
- Fan Y. C. Kwon O. Chem. Commun. 2013;49:11588. doi: 10.1039/C3CC47368F. - DOI - PMC - PubMed
- Liu T.-Y. Xie M. Chen Y.-C. Chem. Soc. Rev. 2012;41:4101. doi: 10.1039/C2CS35017C. - DOI - PubMed
- Wei Y. Shi M. Chem. Rev. 2013;113:6659. doi: 10.1021/cr300192h. - DOI - PubMed
- Pellissier H. Tetrahedron. 2017;73:2831. doi: 10.1016/j.tet.2017.04.008. - DOI
-
-
-
For selected examples, see:
- Wang X. Wang X. Han Z. Wang Z. Ding K. Angew. Chem., Int. Ed. 2017;56:1116. doi: 10.1002/anie.201609332. - DOI - PubMed
- Liu J. Han Z. Wang X. Meng F. Wang Z. Ding K. Angew. Chem., Int. Ed. 2017;56:5050. doi: 10.1002/anie.201701455. - DOI - PubMed
- Zhu Y. Mao Y. Mei H. Pan Y. Han J. Soloshonok V. A. Hayashi T. Chem.–Eur. J. 2018;24:8994. doi: 10.1002/chem.201801670. - DOI - PubMed
- Wang X. Guo P. Han Z. Wang X. Wang Z. Ding K. J. Am. Chem. Soc. 2014;136:405. doi: 10.1021/ja410707q. - DOI - PubMed
- Gowrisankar S. Lee H. S. Kim S. H. Lee K. Y. Kim J. N. Tetrahedron. 2009;65:8769. doi: 10.1016/j.tet.2009.07.034. - DOI
-
-
- Junior C. G. L. Vasconcellos M. L. A. A. Bioorg. Med. Chem. 2012;20:3954. doi: 10.1016/j.bmc.2012.04.061. - DOI - PubMed
- Yu C.-R. Xu L.-H. Tu S. Li Z.-N. Li B. J. Fluorine Chem. 2006;127:1540. doi: 10.1016/j.jfluchem.2006.07.011. - DOI
- Cocco M. Pellegrini C. Martínez-Banaclocha H. Giorgis M. Marini E. Costale A. Miglio G. Fornai M. Antonioli L. López-Castejón G. Tapia-Abellán A. Angosto D. Hafner-Bratkovič I. Regazzoni L. Blandizzi C. Pelegrín P. Bertinaria M. J. Med. Chem. 2017;60:3656. doi: 10.1021/acs.jmedchem.6b01624. - DOI - PubMed
LinkOut - more resources
Full Text Sources