Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 May 27;10(34):20046-20056.
doi: 10.1039/d0ra03086d. eCollection 2020 May 26.

Recent application of visible-light induced radicals in C-S bond formation

Affiliations
Review

Recent application of visible-light induced radicals in C-S bond formation

Vishal Srivastava et al. RSC Adv. .

Retraction in

Abstract

The sulphur centered radicals, produced from various organic compounds, in high efficiency by single-electron-transfer (SET) oxidation. These radicals are highly reactive intermediates having various applications in the construction of organosulphur compounds in the field of synthetic organic chemistry. These S-centred radical-mediated organic transformations have been achieved using photoredox catalysts, including organic dyes and transition metal catalysts, as well as in the absence of any catalyst. Compared with previous methods, photoredox catalysis is inexpensive and features the advantages of being environmentally benign, highly efficient and easy to use. This review focuses on recent developments in the photocatalyzed carbon-sulphur bond formation.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. General scheme involving the application of photocatalysts.
Scheme 1
Scheme 1. Photocatalyzed thiol–ene reaction.
Scheme 2
Scheme 2. Thiolation of allenyl phosphine oxides.
Scheme 3
Scheme 3. Thioacetalization of aldehydes.
Scheme 4
Scheme 4. Thiocyanation reaction of tertiary enaminones.
Scheme 5
Scheme 5. Reaction of 4-substituted Hantzsch ester, DABCO(SO2)2, and alkene.
Scheme 6
Scheme 6. Synthesis of 3-arylsulfonylquinoline derivatives.
Scheme 7
Scheme 7. Sulfonylation of quinoline N-oxides.
Scheme 8
Scheme 8. Synthesis of allylic sulfones.
Scheme 9
Scheme 9. A plausible mechanism for the generation of allylic sulfones.
Scheme 10
Scheme 10. Difluoromethylation of thiols.
Scheme 11
Scheme 11. A radical–radical coupling to synthesize thioesters.
Scheme 12
Scheme 12. Difluoroalkylation–thiolation of alkenes.
Scheme 13
Scheme 13. Hydrothiolation of alkenes and alkynes.
Scheme 14
Scheme 14. A plausible mechanism for the hydrothiolation of alkenes and alkynes.
Scheme 15
Scheme 15. Degenerative radical transfer of xanthates to olefins.
Scheme 16
Scheme 16. Trifluoromethylthiolation of aryldiazonium salts.
Scheme 17
Scheme 17. Synthesis of 4-alkyl/aryl-2-aminothiazoles.
Scheme 18
Scheme 18. Synthesis of 6-(sulfonylmethyl)phenanthridines.
Scheme 19
Scheme 19. Sulfonylation of 4-methylphenols.
Scheme 20
Scheme 20. Chlorosulfonylation of alkynes.
Scheme 21
Scheme 21. Synthesis of aryl sulfides.
Scheme 22
Scheme 22. Coupling of aryldiazosulfones with thiols.
Scheme 23
Scheme 23. Synthesis of sulfonylated oxindoles.
Scheme 24
Scheme 24. Synthesis of 1,3,4-thiadiazines.
Scheme 25
Scheme 25. C–H thiolation.
Scheme 26
Scheme 26. A plausible mechanism for C–H thiolation.
Scheme 27
Scheme 27. Synthesis of sulfonated quinoline derivatives.
Scheme 28
Scheme 28. Synthesis of 2-perfluoroalkylbenzothiazoles.
Scheme 29
Scheme 29. Synthesis of sulfonylated coumarins.
None
Vishal Srivastava
None
Pravin K. Singh
None
Arjita Srivastava
None
Praveen P. Singh

Similar articles

Cited by

References

    1. Shen C. Zhang P. Sun Q. Bai S. Andy Hor T. S. Liu X. Chem. Soc. Rev. 2015;44:291. doi: 10.1039/C4CS00239C. - DOI - PubMed
    2. Xia C. Wei Z. Shen C. Xu J. Yang Y. Su W. Zhang P. RSC Adv. 2015;65:52588. doi: 10.1039/C5RA06474K. - DOI
    3. Lu Q. Zhang J. Wei F. Qi Y. Wang H. Liu Z. Lei A. Angew. Chem. Int. Ed. 2013;52(28):7156. doi: 10.1002/anie.201301634. - DOI - PubMed
    4. Xu J. Shen C. Zhu X. Zhang P. Ajitha M. J. Huang K. W. An Z. Liu X. Chem.–Asian J. 2016;11:882. doi: 10.1002/asia.201501407. - DOI - PubMed
    5. Rocke B. N. Bahnck K. B. Herr M. Lavergne S. Mascitti V. Perreault C. Polivkova J. Shavnya A. Org. Lett. 2014;16:154. doi: 10.1021/ol4031233. - DOI - PubMed
    1. Barattucci A. Aversa M. Mancuso A. Sa lerno T. Bonaccorsi P. Molecules. 2018;23:1030. doi: 10.3390/molecules23051030. - DOI - PMC - PubMed
    1. Neuhaus J. D. Oost R. Merad J. Maulide N. Top. Curr. Chem. 2018;376:15. doi: 10.1007/s41061-018-0193-4. - DOI - PMC - PubMed
    1. Scott K. A. Njardarson J. T. Top. Curr. Chem. 2018;376:5. doi: 10.1007/s41061-018-0184-5. - DOI - PubMed
    1. Feng M. Tang B. Liang S. H. Jiang X. Curr. Top. Med. Chem. 2016;16:1200. doi: 10.2174/1568026615666150915111741. - DOI - PMC - PubMed