Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 26;10(52):31570-31574.
doi: 10.1039/d0ra06580c. eCollection 2020 Aug 21.

Ruthenium-catalyzed, site-selective C-H activation: access to C5-substituted azaflavanone

Affiliations

Ruthenium-catalyzed, site-selective C-H activation: access to C5-substituted azaflavanone

Manickam Bakthadoss et al. RSC Adv. .

Abstract

A site-selective ruthenium-catalyzed keto group assisted C-H bond activation of 2-aryl tetrahydroquinoline (azaflavanone) derivatives has been achieved with a variety of alkenes for the first time. A wide range of substrates was utilized for the synthesis of a wide variety of alkenylated azaflavanones. This simple and efficient protocol provides the C5-substituted azaflavanone derivatives in high yields with a broad range of functional group tolerance. Further, the C5-alkenylated products were converted into substituted 2-aryl quinoline derivatives in good yields.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Comparison between previous reports and our work.
Fig. 2
Fig. 2. ORTEP diagram of compound 3b.
Scheme 1
Scheme 1. Screening of various alkenes with 2 phenyl tetrahydroquinoline.a,b aReaction conditions: 1a (0.2 mmol), 2a–m (0.4 mmol), [{Ru(p-cymene)Cl2}2] (5 mol%), Cu(OAc)2 (50 mol%), AgSbF6 (20 mol%), DCE solvent at 100 °C, 5 h. bIsolated yields.
Scheme 2
Scheme 2. Substrate scope of azaflavanone derivatives with methyl acrylate.a,b aReaction conditions: 1b–h (0.2 mmol), 2a (0.4 mmol), [{Ru(p-cymene)Cl2}2] (5 mol%), Cu(OAc)2 (50 mol%), AgSbF6 (20 mol%), DCE solvent at 100 °C, 5 h. bIsolated yields.
Scheme 3
Scheme 3. Substrate scope of C6, C8 dibromo substituted azaflavanone with alkene.
Scheme 4
Scheme 4. Gram scale synthesis.
Scheme 5
Scheme 5. Competitive reactions.
Scheme 6
Scheme 6. Control experiment for directing group and alkyne.
Scheme 7
Scheme 7. Synthesis of alkyl (E)-3-(4-methoxy-2-phenylquinolin-5-yl) acrylate.
Scheme 8
Scheme 8. Selective alkene reduction of C5-coupled 2-phenyl tetrahydroquinoline 3o.
Scheme 9
Scheme 9. Proposed catalytic cycle for the C5-alkenylation of 2-aryl tetrahydroquinoline.

Similar articles

Cited by

References

    1. Selected review;

    2. Ma W. Gandeepan P. Li J. Ackermann L. Org. Chem. Front. 2017;4:1435. doi: 10.1039/C7QO00134G. - DOI
    3. Davies D. L. Macgregor S. A. McMullin C. L. Chem. Rev. 2017;117:8649. doi: 10.1021/acs.chemrev.6b00839. - DOI - PubMed
    4. Mishra N. K. Sharma S. Park J. Han S. Kim I. S. ACS Catal. 2017;7:2821. doi: 10.1021/acscatal.7b00159. - DOI
    5. Roudesly F. Oble J. Poli G. J. Mol. Catal. A: Chem. 2017;426:275. doi: 10.1016/j.molcata.2016.06.020. - DOI
    6. Yang Y. Lan J. You J. Chem. Rev. 2017;117:8787. doi: 10.1021/acs.chemrev.6b00567. - DOI - PubMed
    7. Xue X. S. Zhou P. Ji B. Cheng J. P. Chem. Rev. 2017;117:8622. doi: 10.1021/acs.chemrev.6b00664. - DOI - PubMed
    8. Dong Z. Ren Z. Thompson S. J. Xu Y. Dong G. Chem. Rev. 2017;117:9333. doi: 10.1021/acs.chemrev.6b00574. - DOI - PubMed
    9. Agasti S. Mondal B. Achar T. K. Sinha S. K. Suseelan A. S. Szabo K. J. Schoenebeck F. Maiti D. ACS Catal. 2019;9:9606. doi: 10.1021/acscatal.9b03019. - DOI
    10. Deb A. Bag S. Kancherla R. Maiti D. J. Am. Chem. Soc. 2014;136:13602. doi: 10.1021/ja5082734. - DOI - PubMed
    1. Selected review;

    2. Arockiam P. Bruneau C. Dixneuf P. Chem. Rev. 2012;112:5879. doi: 10.1021/cr300153j. - DOI - PubMed
    3. Iwai T. Sawamura M. ACS Catal. 2015;5(9):5031. doi: 10.1021/acscatal.5b01143. - DOI
    4. Gensch T. Hopkinson M. N. Glorius F. Delord W. Chem. Soc. Rev. 2016;45:2900. doi: 10.1039/C6CS00075D. - DOI - PubMed
    5. Kakiuchi F. Tanaka Y. Sato T. Chatani N. Murai S. Chem. Lett. 1995:679. doi: 10.1246/cl.1995.679. - DOI
    6. Zhang M. Zhang Y. Jie X. Zhao H. Li G. Su W. Org. Chem. Front. 2014;1:843. doi: 10.1039/C4QO00068D. - DOI
    7. Lyons T. W. Sanford M. Chem. Rev. 2010;110:1147. doi: 10.1021/cr900184e. - DOI - PMC - PubMed
    8. Rousseau G. Breit B. Angew. Chem., Int. Ed. 2011;50:2450. doi: 10.1002/anie.201006139. - DOI - PubMed
    9. Bag S. Maiti D. Synthesis. 2016;48:804–815. doi: 10.1055/s-0035-1561321. - DOI
    1. Basavaiah D. Reddy B. S. Badsara S. S. Chem. Rev. 2010;110:5447. doi: 10.1021/cr900291g. - DOI - PubMed
    2. Bakthadoss M. Srinivasan J. Selvakumar R. Synthesis. 2012;44:755. doi: 10.1055/s-0031-1289707. - DOI
    3. Rotstein B. H. Zaretsky S. Rai V. Yudin A. K. Chem. Rev. 2014;114:8323. doi: 10.1021/cr400615v. - DOI - PubMed
    4. Basavaiah D. Pandiaraju S. Bakthadoss M. Muthukumaran K. Tetrahedron: Asymmetry. 1996;7:997. doi: 10.1016/0957-4166(96)00101-2. - DOI
    5. Bakthadoss M. Sivakumar G. Sharada D. S. Synthesis. 2013:237–245.
    6. Bakthadoss M. Sivakumar N. Devaraj A. Tetrahedron Lett. 2015;56:4980. doi: 10.1016/j.tetlet.2015.07.003. - DOI
    7. Marcos A. P. Clarissa P. Dayse N. Buriol M. MachadoKatritzky P. Chem. Rev. 2009;109:4140. doi: 10.1021/cr9001098. - DOI - PubMed
    8. Bakthadoss M. Devaraj A. Tetrahedron Lett. 2015;56:3954. doi: 10.1016/j.tetlet.2015.05.004. - DOI
    9. Bakthadoss M. Kannan D. Selvakumar R. Chem. Commun. 2013;49:10947. doi: 10.1039/C3CC45502E. - DOI - PubMed
    10. Wu P. Feldman A. K. Nugent A. K. et al. . Angew. Chem., Int. Ed. Engl. 2004;43:3928. doi: 10.1002/anie.200454078. - DOI - PubMed
    11. Basavaiah D. Bakthadoss M. Jayapal Reddy G. Synth. Commun. 2002;32:689. doi: 10.1081/SCC-120002506. - DOI
    12. Bakthadoss M. Sivakumar N. Devaraj A. Synthesis. 2011;4:0611. doi: 10.1055/s-0030-1258409. - DOI
    13. Li H. H. Liu C. Zhang Y. Sun Y. Wang B. Liu W. Org. Lett. 2015;17:932. doi: 10.1021/acs.orglett.5b00033. - DOI - PubMed
    14. Trost B. M. Tracy J. S. Org. Lett. 2017;19:2630. doi: 10.1021/acs.orglett.7b00961. - DOI - PMC - PubMed
    15. Bakthadoss M. Kannan D. Sivakumar N. Malathi P. Manikandan V. Org. Biomol. Chem. 2015;13:5597. doi: 10.1039/C5OB00442J. - DOI - PubMed
    16. Bakthadoss M. Selvakumar R. J. Org. Chem. 2016;81:3391. doi: 10.1021/acs.joc.5b02920. - DOI - PubMed
    1. Cole A. G. Metzger A. Brescia M. R. Qin L. Y. Appell K. C. Brain C. T. Hallett A. Ganju P. Denholm A. A. Wareing J. R. et al. . Bioorg. Med. Chem. Lett. 2009;19:119. doi: 10.1016/j.bmcl.2008.11.005. - DOI - PubMed
    2. Su D. S. Lim J. J. Tinney E. Wan B. L. Young M. B. Anderson K. D. Rudd D. Munshi V. Bahnck C. Felock P. J. et al. . Bioorg. Med. Chem. Lett. 2009;19:5119. doi: 10.1016/j.bmcl.2009.07.031. - DOI - PubMed
    1. Nammalwar B. Bunce R. A. Molecules. 2014;19:204. doi: 10.3390/molecules19010204. - DOI - PMC - PubMed
    2. Katritzky A. R. Rachwal S. Rachwal B. Tetrahedron. 1996;52:15031. doi: 10.1016/S0040-4020(96)00911-8. - DOI
    3. Sridharan V. Suryavanshi P. Menéndez J. C. Chem. Rev. 2011;111:7157. doi: 10.1021/cr100307m. - DOI - PubMed
    4. Muthukrishnan M. Sridharan V. Menéndez J. C. Chem. Rev. 2019;119(8):5057. doi: 10.1021/acs.chemrev.8b00567. - DOI - PubMed