Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 30;9(23):13249-13253.
doi: 10.1039/c9ra02466b. eCollection 2019 Apr 25.

Rapid and halide compatible synthesis of 2- N-substituted indazolone derivatives via photochemical cyclization in aqueous media

Affiliations

Rapid and halide compatible synthesis of 2- N-substituted indazolone derivatives via photochemical cyclization in aqueous media

Hui-Jun Nie et al. RSC Adv. .

Abstract

Indazolone derivatives exhibit a wide range of biological and pharmaceutical properties. We report a rapid and efficient approach to provide structurally diverse 2-N-substituted indazolones via photochemical cyclization in aqueous media at room temperature. This straightforward protocol is halide compatible for the synthesis of halogenated indazolones bearing a broad scope of substrates, which suggests a new avenue of great importance to medicinal chemistry.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Biologically active molecules containing indazolone skeletons.
Scheme 2
Scheme 2. Representative approaches for the preparation of indazolone skeletons.
Scheme 3
Scheme 3. Synthesis of indazolone derivatives via photochemical cyclization.
Scheme 4
Scheme 4. Straightforward synthesis of indazolones (1 and 2). Reaction conditions: primary amines (0.3 mmol), o-nitrobenzyl alcohol (0.75 mmol), isolated yield.

Similar articles

Cited by

References

    1. Zhang S. G. Liang C. G. Zhang W. H. Molecules. 2018;23:2783. doi: 10.3390/molecules23112783. - DOI - PMC - PubMed
    2. Denya I. Malan S. F. Joubert J. Expert Opin. Ther. Pat. 2018;28:441. doi: 10.1080/13543776.2018.1472240. - DOI - PubMed
    3. Thangadurai A. Minu M. Wakode S. Agrawal S. Narasimhan B. Med. Chem. Res. 2012;21:1509–1523. doi: 10.1007/s00044-011-9631-3. - DOI
    4. Haddadin M. J. Conrad W. E. Kurth M. J. Mini-Rev. Med. Chem. 2012;12:1293. doi: 10.2174/138955712802762059. - DOI - PubMed
    5. Dong J. Y. Zhang Q. J. Wang Z. T. Huang G. Li S. S. ChemMedChem. 2018;13:1490. doi: 10.1002/cmdc.201800253. - DOI - PubMed
    6. Gaikwad D. D. Chapolikar A. D. Devkate C. G. Warad K. D. Tayade A. P. Pawar R. P. Domb A. J. Eur. J. Med. Chem. 2015;90:707. doi: 10.1016/j.ejmech.2014.11.029. - DOI - PubMed
    1. Roth A. Ott S. Farber K. M. Palazzo T. A. Conrad W. E. Haddadin M. J. Tantillo D. J. Cross C. E. Eiserich J. P. Kurth M. J. Bioorg. Med. Chem. 2014;22:6422. doi: 10.1016/j.bmc.2014.09.044. - DOI - PMC - PubMed
    2. Leis J. and Carter C., US Pat., US20140179637 A1, 2014
    1. Montero-Torres A. Vega M. C. Marrero-Ponce Y. Rolon M. Gomez-Barrio A. Escario J. A. Aran V. J. Martinez-Fernandez A. R. Meneses-Marcel A. Bioorg. Med. Chem. 2005;13:6264. doi: 10.1016/j.bmc.2005.06.049. - DOI - PubMed
    2. Vega M. C. Rolon M. Montero-Torres A. Fonseca-Berzal C. Escario J. A. Gomez-Barrio A. Galvez J. Marrero-Ponce Y. Aran V. J. Eur. J. Med. Chem. 2012;58:214. doi: 10.1016/j.ejmech.2012.10.009. - DOI - PubMed
    1. Qian Y. M. Bolin D. Conde-Knape K. Gillespie P. Hayden S. Huang K. S. Olivier A. R. Sato T. Xiang Q. Yun W. Y. Zhang X. L. Bioorg. Med. Chem. Lett. 2013;23:2936. doi: 10.1016/j.bmcl.2013.03.049. - DOI - PubMed
    1. Fletcher S. R. McIver E. Lewis S. Burkamp F. Leech C. Mason G. Boyce S. Morrison D. Richards G. Sutton K. Jones A. B. Bioorg. Med. Chem. Lett. 2006;16:2872. doi: 10.1016/j.bmcl.2006.03.004. - DOI - PubMed