Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 29;9(23):13077-13081.
doi: 10.1039/c9ra01479a. eCollection 2019 Apr 25.

Highly efficient & stable Bi & Sb anodes using lithium borohydride as solid electrolyte in Li-ion batteries

Affiliations

Highly efficient & stable Bi & Sb anodes using lithium borohydride as solid electrolyte in Li-ion batteries

Pooja Kumari et al. RSC Adv. .

Abstract

Herein, we employed Bi and Sb as the negative electrode in all solid-state lithium-ion batteries (LIBs) using LiBH4 as the solid-state electrolyte. The composite anode materials with acetylene black (AB) and LiBH4, prepared by high energy ball-milling, have shown extremely high stability with a high coulombic efficiency of 90-99% over a number of cycles. The gravimetric capacity decayed by only 18 and 5% as compared to the initial volumetric capacity of 4681.7 and 4393.4 mA h cm-3 for Bi and Sb anodes respectively.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Cyclic voltammograms of Bi and Sb composite electrode scanned at 0.1 mV s−1.
Fig. 2
Fig. 2. The first galvanostatic discharge–charge curves for (a) Bi–LiBH4–AB composite (b) Sb–LiBH4–AB composite electrodes in the voltage range of 0.2–1.5 V at 0.1C.
Fig. 3
Fig. 3. (a) The cyclic galvanostatic discharge–charge profiles for Bi–LiBH4–AB composite electrodes in the voltage range of 0.2–1.5 V at 0.1C. Only selected cycles (1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100) are shown for clear visibility. (b) Cyclic stability of Bi–LiBH4–AB composite electrodes as shown by discharge/charge capacity and the coulombic efficiency vs. cycle no.
Fig. 4
Fig. 4. (a) The cyclic galvanostatic discharge–charge profiles for Sb–LiBH4–AB composite electrodes in the voltage range of 0.2–1.5 V at 0.1C. Only selected cycles (1, 5, 10, 20, 30, 40, 50) are shown for clear visibility. (b) Cyclic stability of Sb–LiBH4–AB composite electrodes as shown by discharge/charge capacity and the coulombic efficiency vs. cycle no.

Similar articles

Cited by

References

    1. de Jongh P. E. Blanchard D. Matsuo M. Udovic T. J. Orimo S. Appl. Phys. A: Mater. Sci. Process. 2016;122:251. doi: 10.1007/s00339-016-9807-2. - DOI
    1. Bachman J. C. Muy S. Grimaud A. Chang H.-H. Pour N. Lux S. F. Paschos O. Maglia F. Lupart S. Lamp P. Giordano L. Shao-Horn Y. Chem. Rev. 2016;116:140–162. doi: 10.1021/acs.chemrev.5b00563. - DOI - PubMed
    1. Zeng L. Ichikawa T. Kawahito K. Miyaoka H. Kojima Y. ACS Appl. Mater. Interfaces. 2017;9:2261–2266. doi: 10.1021/acsami.6b11314. - DOI - PubMed
    1. Kawahito K. Zeng L. Ichikawa T. Miyaoka H. Kojima Y. Mater. Trans. 2016;57:755–757. doi: 10.2320/matertrans.M2016024. - DOI
    1. Zeng L. Kawahito K. Ikeda S. Ichikawa T. Miyaoka H. Kojima Y. Chem. Commun. 2015;51:9773–9776. doi: 10.1039/C5CC02614H. - DOI - PubMed