Mechanistic insight into the catalytic hydrogenation of nonactivated aldehydes with a Hantzsch ester in the presence of a series of organoboranes: NMR and DFT studies
- PMID: 35520935
- PMCID: PMC9062335
- DOI: 10.1039/c9ra01468c
Mechanistic insight into the catalytic hydrogenation of nonactivated aldehydes with a Hantzsch ester in the presence of a series of organoboranes: NMR and DFT studies
Abstract
Mechanistic studies on the organoborane-catalyzed transfer hydrogenation of nonactivated aldehydes with a Hantzsch ester (diethyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate) as a synthetic NADH analogue were performed by NMR experiments and DFT calculations. In the reaction of benzaldehyde with the Hantzsch ester, the catalytic activity of tris[3,5-bis(trifluoromethyl)phenyl]borane was superior to that of other borane catalysts, such as tris(pentafluorophenyl)borane, trifluoroborane etherate, or triphenylborane. Stoichiometric NMR experiments demonstrated that the hydrogenation process proceeds through activation of the aldehyde by the borane catalyst, followed by hydride transfer from the Hantzsch ester to the resulting activated aldehyde. DFT calculations for the hydrogenation of benzaldehyde with the Hantzsch ester in the presence of borane catalysts supported the reaction pathway and showed why the catalytic activity of tris[3,5-bis(trifluoromethyl)phenyl]borane is higher than that of the other boron catalysts. Association constants and Gibbs free energies in the reaction of boron catalysts with benzaldehyde or benzyl alcohol, which were investigated by 1H NMR analyses, also indicated why tris[3,5-bis(trifluoromethyl)phenyl]borane is a superior catalyst to tris(pentafluorophenyl)borane, trifluoroborane etherate, or triphenylborane in the hydrogenation reaction.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures













Similar articles
-
Tris(pentafluorophenyl)borane as an efficient catalyst in the guanylation reaction of amines.Dalton Trans. 2016 Jun 28;45(26):10717-29. doi: 10.1039/c6dt01237j. Dalton Trans. 2016. PMID: 27278089
-
Mechanistic Insight into Hydroboration of Imines from Combined Computational and Experimental Studies.Chemistry. 2022 Feb 19;28(11):e202104004. doi: 10.1002/chem.202104004. Epub 2022 Jan 31. Chemistry. 2022. PMID: 35018677
-
Benzothiazoline: versatile hydrogen donor for organocatalytic transfer hydrogenation.Acc Chem Res. 2015 Feb 17;48(2):388-98. doi: 10.1021/ar500414x. Epub 2015 Jan 22. Acc Chem Res. 2015. PMID: 25611073 Review.
-
On the possibility of catalytic reduction of carbonyl moieties with tris(pentafluorophenyl)borane and H2: a computational study.Dalton Trans. 2009 Aug 7;(29):5780-6. doi: 10.1039/b905137f. Epub 2009 Jun 12. Dalton Trans. 2009. PMID: 20449093
-
Tris(pentafluorophenyl)borane-Catalyzed Reactions Using Silanes.Molecules. 2019 Jan 25;24(3):432. doi: 10.3390/molecules24030432. Molecules. 2019. PMID: 30691072 Free PMC article. Review.
Cited by
-
Metallated dihydropyridinates: prospects in hydride transfer and (electro)catalysis.Chem Sci. 2023 Jul 17;14(31):8234-8248. doi: 10.1039/d3sc02080k. eCollection 2023 Aug 9. Chem Sci. 2023. PMID: 37564402 Free PMC article. Review.
-
Theoretical investigation on the nature of 4-substituted Hantzsch esters as alkylation agents.RSC Adv. 2020 Aug 25;10(52):31425-31434. doi: 10.1039/d0ra06745h. eCollection 2020 Aug 21. RSC Adv. 2020. PMID: 35520635 Free PMC article.
-
Kinetic Studies of Hantzsch Ester and Dihydrogen Donors Releasing Two Hydrogen Atoms in Acetonitrile.ACS Omega. 2022 Jul 22;7(30):26416-26424. doi: 10.1021/acsomega.2c02264. eCollection 2022 Aug 2. ACS Omega. 2022. PMID: 35936422 Free PMC article.
References
-
- Berg J. M., Tymoczko J. L. and Stryer L., Biochemistry, W. H. Freeman, New York, 5th edn, 2001
-
-
For selected recent reviews on enzymatic reduction of carbonyl compounds, see;
- Kataoka M. Kita K. Wada M. Yasohara Y. Hasegawa J. Shimizu S. Appl. Microbiol. Biotechnol. 2003;62:437. doi: 10.1007/s00253-003-1347-y. - DOI - PubMed
- Jarboe L. R. Appl. Microbiol. Biotechnol. 2011;89:249. doi: 10.1007/s00253-010-2912-9. - DOI - PubMed
- Rabinovitch-Deere C. A. Oliver J. W. K. Rodriguez G. M. Atsumi S. Chem. Rev. 2013;113:4611. doi: 10.1021/cr300361t. - DOI - PubMed
-
-
-
For selected recent reviews on transfer hydrogenation using synthetic NADH analogues as the hydrogen donors, see;
- You S.-L. Chem.–Asian J. 2007;2:820. doi: 10.1002/asia.200700081. - DOI - PubMed
- Ouellet S. G. Walji A. M. Macmillan D. W. C. Acc. Chem. Res. 2007;40:1327. doi: 10.1021/ar7001864. - DOI - PubMed
- Rueping M. Sugiono E. Schoepke F. R. Synlett. 2010;21:852. doi: 10.1055/s-0029-1219528. - DOI
- Rueping M. Dufour J. Schoepke F. R. Green Chem. 2011;13:1084. doi: 10.1039/C1GC15027H. - DOI
- de Vries J. G. Mršić N. Catal. Sci. Technol. 2011;1:727. doi: 10.1039/C1CY00050K. - DOI
- Zheng C. You S.-L. Chem. Soc. Rev. 2012;41:2498. doi: 10.1039/C1CS15268H. - DOI - PubMed
- Philips A. M. F. Pomberio A. J. L. Org. Biomol. Chem. 2017;15:2307. doi: 10.1039/C7OB00113D. - DOI - PubMed
-
-
-
For catalytic transfer hydrogenation of imines with a Hantzsch ester, see;
- Rueping M. Azap C. Sugiono E. Theissmann T. Synlett. 2005:2367. doi: 10.1055/s-2005-872251. - DOI - PubMed
- Rueping M. Sugiono E. Azap C. Theissmann T. Bolte M. Org. Lett. 2005;7:3781. doi: 10.1021/ol0515964. - DOI - PubMed
- Hoffmann S. Seayad A. M. List B. Angew. Chem., Int. Ed. 2005;44:7424. doi: 10.1002/anie.200503062. - DOI - PubMed
- Nguyen T. B. Bousserouel H. Wang Q. Guéritte F. Adv. Synth. Catal. 2011;353:257. doi: 10.1002/adsc.201000754. - DOI
- Nguyen T. B. Wang Q. Guéritte F. Chem.–Eur. J. 2011;17:9576. doi: 10.1002/chem.201101694. - DOI - PubMed
- Bachu P. Zhu C. Akiyama T. Tetrahedron Lett. 2013;54:3977. doi: 10.1016/j.tetlet.2013.05.071. - DOI
- Akiyama T. Saito K. Janczak S. Lesnikowsiki Z. J. Synlett. 2014;25:795. doi: 10.1055/s-0033-1340847. - DOI
- Wakchaure V. N. Kaib P. S. J. Leutzsch M. List B. Angew. Chem., Int. Ed. 2015;54:11852. doi: 10.1002/anie.201504052. - DOI - PubMed
- Chen J. Zhang Z. Bao Z. Su Y. Xing H. Yang Q. Ren Q. ACS Appl. Mater. Interfaces. 2017;9:9772. doi: 10.1021/acsami.7b00562. - DOI - PubMed
- Wang Q. Chen J. Feng X. Du H. Org. Biomol. Chem. 2018;16:1448. doi: 10.1039/C8OB00023A. - DOI - PubMed
-
LinkOut - more resources
Full Text Sources
Miscellaneous