Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 21;9(28):15749-15762.
doi: 10.1039/c9ra01012b. eCollection 2019 May 20.

Sulfonic acid functionalized metal-organic framework (S-IRMOF-3): a novel catalyst for sustainable approach towards the synthesis of acrylonitriles

Affiliations

Sulfonic acid functionalized metal-organic framework (S-IRMOF-3): a novel catalyst for sustainable approach towards the synthesis of acrylonitriles

Ryhan Abdullah Rather et al. RSC Adv. .

Abstract

A sulfonic acid functionalized metal-organic framework (S-IRMOF-3) has been synthesized by dropwise addition of chlorosulfonic acid (0.5 mL) in IRMOF-3 (1 g) containing 20 mL of CHCl3 at 0 °C under simple stirring. The catalyst was applied in Knoevenagel condensation of various aromatic and hetero-aromatic aldehydes forming acrylonitrile derivatives. The catalyst was characterized thoroughly by using FT-IR, XRD, 13C MAS NMR, SEM, EDX, elemental mapping, TEM, BET, NH3-TPD and TGA/DTA techniques. The presence of characteristic bands at 1694 cm-1, 1254-769 cm-1 and 1033 cm-1 in the FT-IR spectrum, 2θ ≃ 6.7° and 9.8° in the XRD pattern and δ = 31.79, 39.55, 129.61, 131.46 (4C, CH), 133.54, 140.07 (2C), 167.71, 171.47 ppm (2C, 2C[double bond, length as m-dash]O) in the solid state 13C MAS NMR spectrum confirmed the successful formation of catalyst. This new eco-friendly approach resulted in a significant improvement in the synthetic efficiency (90-96% yield), high product purity, and minimizing the production of chemical wastes without using highly toxic reagents for the synthesis of acrylonitriles with selectivity for (Z)-isomer. Steric interactions seem to have an influence on the control of the Z-configurational isomers. By performing DFT calculations, it was found that the (Z)-isomer 3a is stabilized by 1.64 kcal mol-1 more than the (E)-isomer. The catalyst could be reused for five consecutive cycles without substantial loss in catalytic activity.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1
Fig. 1
Fig. 1. The infrared spectra of IRMOF-3, S-IRMOF-3 and recycled S-IRMOF-3.
Fig. 2
Fig. 2. XRD patterns of (a) IRMOF-3, (b) S-IRMOF-3 and (c) recycled S-IRMOF-3.
Fig. 3
Fig. 3. Solid state 13C MAS NMR spectrum of S-IRMOF-3.
Fig. 4
Fig. 4. SEM images of (a) IRMOF-3 and (b) the synthesized catalyst (S-IRMOF-3) at different magnifications.
Fig. 5
Fig. 5. (a) EDX analysis of S-IRMOF-3. (b) Elemental mapping of S-IRMOF-3.
Fig. 6
Fig. 6. TEM images of fresh catalyst (A) and recycled catalyst (B).
Fig. 7
Fig. 7. TG/DT analysis of the catalyst.
Fig. 8
Fig. 8. Effect of SO3H content on thermal stability of catalyst.
Fig. 9
Fig. 9. N2 adsorption isotherms of (a) IRMOF-3 and (b) S-IRMOF-3. PSD of (c) IRMOF-3 and (d) S-IRMOF-3.
Fig. 10
Fig. 10. NH3-TPD curves of (a) IRMOF-3 and (b) S-IRMOF-3.
Scheme 2
Scheme 2. General scheme for the formation of acrylonitrile derivatives.
Scheme 3
Scheme 3. Proposed reaction mechanism.
Fig. 11
Fig. 11. Recycling data of S-IRMOF-3 catalyst.
Fig. 12
Fig. 12. Ground state optimized structures of the (a) (Z)-isomer and (b) (E)-isomer of compound 3a.
Fig. 13
Fig. 13. Theoretically obtained infrared (IR) spectrum of the (Z)-isomer by DFT calculations.
Fig. 14
Fig. 14. Electron density distributions in the (a) HOMO and (b) LUMO of the (Z)-isomer.

References

    1. Bonifacio L. D. Lotsch B. V. Puzzo D. P. Scotognella F. Ozin G. A. Adv. Mater. 2009;21:1641–1646. doi: 10.1002/adma.200802348. - DOI
    1. Zhou H. C. Long J. R. Yaghi O. M. Chem. Rev. 2012;8:673–674. doi: 10.1021/cr300014x. - DOI - PubMed
    1. Bardosova M. Pemble M. E. Povey I. M. Tredgold R. H. Whitehead D. E. Appl. Phys. Lett. 2006;89:093116. doi: 10.1063/1.2339031. - DOI
    1. Stine R. Robinson J. T. Sheehan P. E. Tamanaha C. R. Adv. Mater. 2010;22:5297–5300. doi: 10.1002/adma.201002121. - DOI - PubMed
    1. Férey G. Chem. Soc. Rev. 2008;37:191–214. doi: 10.1039/B618320B. - DOI - PubMed
    2. Long J. R. Yaghi O. M. Chem. Soc. Rev. 2009;38:1213–1214. doi: 10.1039/B903811F. - DOI - PubMed
    3. Cook T. R. Zheng Y. R. Stang P. J. Chem. Rev. 2012;113:734–777. doi: 10.1021/cr3002824. - DOI - PMC - PubMed

LinkOut - more resources