Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun;18(24):e2201815.
doi: 10.1002/smll.202201815. Epub 2022 May 6.

Design of MOF-Derived NiO-Carbon Nanohybrids Photocathodes Sensitized with Quantum Dots for Solar Hydrogen Production

Affiliations

Design of MOF-Derived NiO-Carbon Nanohybrids Photocathodes Sensitized with Quantum Dots for Solar Hydrogen Production

Li Shi et al. Small. 2022 Jun.

Abstract

Nickel oxide (NiO) is a promising p-type material for a wide range of optoelectronic devices, as well as photocathode for photoelectrochemical (PEC) water splitting. However, traditional NiO photoelectrodes exhibit a wide bandgap (3.6 eV), intrinsic poor electrical conductivity, and low surface area, leading to low PEC systems performance. Herein, the authors explore a Ni-based metal-organic framework (MOF) template method to obtain hierarchical hollow spheres of carbon/NiO nanostructure by successive carbonization and oxidation treatments. After sensitization with core and core-shell quantum dots (QDs), the optimized NiO-photocathode exhibits a maximum current density of -93.6 µA cm-2 at 0 V versus RHE (reversible hydrogen electrode) in neutral pH (6.8) and -285 µA cm-2 at -0.4 V versus RHE. Compared to pure NiO and single-core CdSe QDs, a 2.2-fold increase in photocurrent can be obtained. The improvement in the performance of this hybrid is not only due to the high surface area for loading QDs and light scattering, but also to the presence of a highly conductive carbon matrix that promotes fast charge transfer. The proposed MOFs-based NiO/carbon photocathode sensitized with QDs can be an effective strategy to improve the efficiency of metal oxide-based PEC systems for hydrogen generation.

Keywords: hydrogen generation; metal-organic frameworks; photocathodes; photoelectrochemical water splitting; quantum dots.

PubMed Disclaimer

References

    1. a) Y. Yu, Z. Zhang, X. Yin, A. Kvit, Q. Liao, Z. Kang, X. Yan, Y. Zhang, X. Wang, Nat. Energy 2017, 2, 17045;
    1. b) P. Meng, M. Wang, Y. Yang, S. Zhang, L. Sun, J. Mater. Chem. A 2015, 3, 18852.
    1. a) L. Shi, D. Benetti, F. Li, Q. Wei, F. Rosei, Appl. Catal. B 2020, 263, 118317;
    1. b) J. Z. Zhang, MRS Bull. 2011, 36, 48.
    1. a) C. Jiang, S. J. Moniz, A. Wang, T. Zhang, J. Tang, Chem. Soc. Rev. 2017, 46, 4645;

LinkOut - more resources