Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 18;14(19):22454-22465.
doi: 10.1021/acsami.2c03014. Epub 2022 May 6.

In Situ Foam 3D Printing of Microcellular Structures Using Material Extrusion Additive Manufacturing

Affiliations

In Situ Foam 3D Printing of Microcellular Structures Using Material Extrusion Additive Manufacturing

Karun Kalia et al. ACS Appl Mater Interfaces. .

Abstract

A facile manufacturing method to enable the in situ foam 3D printing of thermoplastic materials is reported. An expandable feedstock filament was first made by incorporation of thermally expandable microspheres (TEMs) in the filament during the extrusion process. The material formulation and extrusion process were designed such that TEM expansion was suppressed during filament fabrication. Polylactic acid (PLA) was used as a model material, and filaments containing 2.0 wt % triethyl citrate and 0.0-5.0 wt % TEM were fabricated. Expandable filaments were then fed into a material extrusion additive manufacturing process to enable the in situ foaming of microcellular structures during layer deposition. The mesostructure, cellular morphology, thermal behavior, and mechanical properties of the printed foams were investigated. Repeatable foam prints with highly uniform cellular structures were successfully achieved. The part density was reduced with an increase in the TEM content, with a maximum reduction of 50% at 5.0 wt % TEM content. It is also remarkable that the interbead gaps of mesostructure vanished due to the local polymer expansion during in situ foaming. The incorporation of TEM and plasticizer only slightly lowered the critical temperatures of PLA, that is, glass-transition, melting, and decomposition temperatures. Moreover, with the introduction of foaming, the specific tensile strength and modulus decreased, whereas the ductility and toughness increased severalfold. The results unveil the feasibility of a novel additive manufacturing technology that offers numerous opportunities toward the manufacturing of specially designed structures including functionally graded foams for a variety of applications.

Keywords: 3D printing; foam; fused filament fabrication; material extrusion additive manufacturing; microcellular; thermally expandable microsphere.

PubMed Disclaimer

LinkOut - more resources